File size: 5,676 Bytes
8d6918f 9f008c5 8d6918f 3158608 8d6918f 7930488 8d6918f 53566b5 7750210 5e59482 53566b5 3158608 8d6918f 3158608 45149c8 f4e3f5a 3158608 8d6918f 3158608 8d6918f 3158608 8d6918f 3158608 8d6918f 3158608 8d6918f 0382f24 3158608 0382f24 3158608 0382f24 3158608 4b19892 8d6918f 3158608 7930488 3158608 2875df5 3158608 7930488 8d6918f 3158608 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
language: en
datasets:
- squad_v2
license: cc-by-4.0
model-index:
- name: deepset/tinyroberta-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- name: Exact Match
type: exact_match
value: 78.8627
verified: true
- name: F1
type: f1
value: 82.0355
verified: true
---
# tinyroberta-squad2
This is the *distilled* version of the [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) model. This model has a comparable prediction quality and runs at twice the speed of the base model.
## Overview
**Language model:** tinyroberta-squad2
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** SQuAD 2.0
**Eval data:** SQuAD 2.0
**Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system)
**Infrastructure**: 4x Tesla v100
## Hyperparameters
```
batch_size = 96
n_epochs = 4
base_LM_model = "deepset/tinyroberta-squad2-step1"
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride = 128
max_query_length = 64
distillation_loss_weight = 0.75
temperature = 1.5
teacher = "deepset/robert-large-squad2"
```
## Distillation
This model was distilled using the TinyBERT approach described in [this paper](https://arxiv.org/pdf/1909.10351.pdf) and implemented in [haystack](https://github.com/deepset-ai/haystack).
Firstly, we have performed intermediate layer distillation with roberta-base as the teacher which resulted in [deepset/tinyroberta-6l-768d](https://huggingface.co/deepset/tinyroberta-6l-768d).
Secondly, we have performed task-specific distillation with [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) as the teacher for further intermediate layer distillation on an augmented version of SQuADv2 and then with [deepset/roberta-large-squad2](https://huggingface.co/deepset/roberta-large-squad2) as the teacher for prediction layer distillation.
## Usage
### In Haystack
Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/):
```python
reader = FARMReader(model_name_or_path="deepset/tinyroberta-squad2")
# or
reader = TransformersReader(model_name_or_path="deepset/tinyroberta-squad2")
```
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/tinyroberta-squad2"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Performance
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
```
"exact": 78.69114798281817,
"f1": 81.9198998536977,
"total": 11873,
"HasAns_exact": 76.19770580296895,
"HasAns_f1": 82.66446878592329,
"HasAns_total": 5928,
"NoAns_exact": 81.17746005046257,
"NoAns_f1": 81.17746005046257,
"NoAns_total": 5945
```
## Authors
**Branden Chan:** branden.chan@deepset.ai
**Timo M枚ller:** timo.moeller@deepset.ai
**Malte Pietsch:** malte.pietsch@deepset.ai
**Tanay Soni:** tanay.soni@deepset.ai
**Michel Bartels:** michel.bartels@deepset.ai
## About us
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
</div>
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
</div>
</div>
[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.
Some of our other work:
- [roberta-base-squad2]([https://huggingface.co/deepset/roberta-base-squad2)
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
## Get in touch and join the Haystack community
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community/join">Discord community open to everyone!</a></strong></p>
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
By the way: [we're hiring!](http://www.deepset.ai/jobs) |