Edit model card

tinybert for Extractive QA

Overview

Language model: deepset/tinybert-6L-768D-squad2
Language: English
Training data: SQuAD 2.0 training set x 20 augmented + SQuAD 2.0 training set without augmentation
Eval data: SQuAD 2.0 dev set Code: See an example extractive QA pipeline built with Haystack
Infrastructure: 1x V100 GPU
Published: Dec 8th, 2021

Details

  • Haystack's intermediate layer and prediction layer distillation features were used for training (based on TinyBERT). deepset/bert-base-uncased-squad2 was used as the teacher model and huawei-noah/TinyBERT_General_6L_768D was used as the student model.

Hyperparameters

Intermediate layer distillation

batch_size = 26
n_epochs = 5
max_seq_len = 384
learning_rate = 5e-5
lr_schedule = LinearWarmup
embeds_dropout_prob = 0.1
temperature = 1

Prediction layer distillation

batch_size = 26
n_epochs = 5
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
embeds_dropout_prob = 0.1
temperature = 1
distillation_loss_weight = 1.0

Usage

In Haystack

Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. To load and run the model with Haystack:

# After running pip install haystack-ai "transformers[torch,sentencepiece]"

from haystack import Document
from haystack.components.readers import ExtractiveReader

docs = [
    Document(content="Python is a popular programming language"),
    Document(content="python ist eine beliebte Programmiersprache"),
]

reader = ExtractiveReader(model="deepset/tinybert-6l-768d-squad2")
reader.warm_up()

question = "What is a popular programming language?"
result = reader.run(query=question, documents=docs)
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}

For a complete example with an extractive question answering pipeline that scales over many documents, check out the corresponding Haystack tutorial.

In Transformers

from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline

model_name = "deepset/tinybert-6l-768d-squad2"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

Performance

"exact": 71.87736882001179
"f1": 76.36111895973675

Authors

  • Timo Möller: timo.moeller [at] deepset.ai
  • Julian Risch: julian.risch [at] deepset.ai
  • Malte Pietsch: malte.pietsch [at] deepset.ai
  • Michel Bartels: michel.bartels [at] deepset.ai

About us

deepset is the company behind the production-ready open-source AI framework Haystack.

Some of our other work:

Get in touch and join the Haystack community

For more info on Haystack, visit our GitHub repo and Documentation.

We also have a Discord community open to everyone!

Twitter | LinkedIn | Discord | GitHub Discussions | Website | YouTube

By the way: we're hiring!

Downloads last month
61
Safetensors
Model size
66.4M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for deepset/tinybert-6l-768d-squad2

Finetunes
8 models

Dataset used to train deepset/tinybert-6l-768d-squad2

Evaluation results