Edit model card

roberta-large for QA

This is the roberta-large model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.


Language model: roberta-large
Language: English
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0
Code: See an example QA pipeline on Haystack
Infrastructure: 4x Tesla v100


base_LM_model = "roberta-large"

Using a distilled model instead

Please note that we have also released a distilled version of this model called deepset/roberta-base-squad2-distilled. The distilled model has a comparable prediction quality and runs at twice the speed of the large model.


In Haystack

Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in Haystack:

reader = FARMReader(model_name_or_path="deepset/roberta-large-squad2")
# or 
reader = TransformersReader(model_name_or_path="deepset/roberta-large-squad2",tokenizer="deepset/roberta-large-squad2")

For a complete example of roberta-large-squad2 being used for Question Answering, check out the Tutorials in Haystack Documentation

In Transformers

from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline

model_name = "deepset/roberta-large-squad2"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)


Branden Chan: branden.chan@deepset.ai
Timo M枚ller: timo.moeller@deepset.ai
Malte Pietsch: malte.pietsch@deepset.ai
Tanay Soni: tanay.soni@deepset.ai

About us

deepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.

Some of our other work:

Get in touch and join the Haystack community

For more info on Haystack, visit our GitHub repo and Documentation.

We also have a Discord community open to everyone!

Twitter | LinkedIn | Discord | GitHub Discussions | Website

By the way: we're hiring!

Downloads last month
Model size
354M params
Tensor type

Finetuned from

Dataset used to train deepset/roberta-large-squad2

Spaces using deepset/roberta-large-squad2 10

Evaluation results