Tuana's picture Update README.md 06d3b5d
language: en
- squad_v2
license: cc-by-4.0
# roberta-base-squad2 for QA on COVID-19
## Overview
**Language model:** deepset/roberta-base-squad2
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** [SQuAD-style CORD-19 annotations from 23rd April](https://github.com/deepset-ai/COVID-QA/blob/master/data/question-answering/200423_covidQA.json)
**Code:** See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering_crossvalidation.py) in [FARM](https://github.com/deepset-ai/FARM)
**Infrastructure**: Tesla v100
## Hyperparameters
batch_size = 24
n_epochs = 3
base_LM_model = "deepset/roberta-base-squad2"
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.1
doc_stride = 128
xval_folds = 5
dev_split = 0
no_ans_boost = -100
license: cc-by-4.0
## Performance
5-fold cross-validation on the data set led to the following results:
**Single EM-Scores:** [0.222, 0.123, 0.234, 0.159, 0.158]
**Single F1-Scores:** [0.476, 0.493, 0.599, 0.461, 0.465]
**Single top\\_3\\_recall Scores:** [0.827, 0.776, 0.860, 0.771, 0.777]
**XVAL EM:** 0.17890995260663506
**XVAL f1:** 0.49925444207319924
**XVAL top\\_3\\_recall:** 0.8021327014218009
This model is the model obtained from the **third** fold of the cross-validation.
## Usage
### In Haystack
For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/):
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2-covid")
# or
reader = TransformersReader(model="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2-covid")
### In Transformers
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/roberta-base-squad2-covid"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
## Authors
**Branden Chan:** branden.chan@deepset.ai
**Timo Möller:** timo.moeller@deepset.ai
**Malte Pietsch:** malte.pietsch@deepset.ai
**Tanay Soni:** tanay.soni@deepset.ai
**Bogdan Kostić:** bogdan.kostic@deepset.ai
## About us
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.
Some of our other work:
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2)
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
## Get in touch and join the Haystack community
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://haystack.deepset.ai">Documentation</a></strong>.
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community/join">Discord community open to everyone!</a></strong></p>
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
By the way: [we're hiring!](http://www.deepset.ai/jobs)