julianrisch
commited on
Commit
•
bd56cd0
1
Parent(s):
2acbc99
Update README.md
Browse files
README.md
CHANGED
@@ -5,14 +5,14 @@ datasets:
|
|
5 |
license: cc-by-4.0
|
6 |
---
|
7 |
|
8 |
-
# roberta-base-squad2 for QA on COVID-19
|
9 |
|
10 |
## Overview
|
11 |
**Language model:** deepset/roberta-base-squad2
|
12 |
**Language:** English
|
13 |
**Downstream-task:** Extractive QA
|
14 |
**Training data:** [SQuAD-style CORD-19 annotations from 23rd April](https://github.com/deepset-ai/COVID-QA/blob/master/data/question-answering/200423_covidQA.json)
|
15 |
-
**Code:** See [an example QA pipeline
|
16 |
**Infrastructure**: Tesla v100
|
17 |
|
18 |
## Hyperparameters
|
@@ -48,19 +48,33 @@ This model is the model obtained from the **third** fold of the cross-validation
|
|
48 |
## Usage
|
49 |
|
50 |
### In Haystack
|
51 |
-
|
|
|
52 |
```python
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
```
|
|
|
57 |
|
58 |
### In Transformers
|
59 |
```python
|
60 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
61 |
|
62 |
-
|
63 |
-
model_name = "deepset/roberta-base-squad2-covid"
|
64 |
|
65 |
# a) Get predictions
|
66 |
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
@@ -75,6 +89,7 @@ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
|
75 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
76 |
```
|
77 |
|
|
|
78 |
## Authors
|
79 |
**Branden Chan:** branden.chan@deepset.ai
|
80 |
**Timo Möller:** timo.moeller@deepset.ai
|
@@ -83,6 +98,7 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
83 |
**Bogdan Kostić:** bogdan.kostic@deepset.ai
|
84 |
|
85 |
## About us
|
|
|
86 |
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
|
87 |
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
88 |
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
|
@@ -92,20 +108,19 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
92 |
</div>
|
93 |
</div>
|
94 |
|
95 |
-
[deepset](http://deepset.ai/) is the company behind the open-source
|
96 |
-
|
97 |
|
98 |
Some of our other work:
|
99 |
-
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](
|
100 |
-
- [German BERT
|
101 |
-
- [
|
102 |
|
103 |
## Get in touch and join the Haystack community
|
104 |
|
105 |
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
|
106 |
|
107 |
-
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community
|
108 |
|
109 |
-
[Twitter](https://twitter.com/
|
110 |
|
111 |
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|
|
|
5 |
license: cc-by-4.0
|
6 |
---
|
7 |
|
8 |
+
# roberta-base-squad2 for Extractive QA on COVID-19
|
9 |
|
10 |
## Overview
|
11 |
**Language model:** deepset/roberta-base-squad2
|
12 |
**Language:** English
|
13 |
**Downstream-task:** Extractive QA
|
14 |
**Training data:** [SQuAD-style CORD-19 annotations from 23rd April](https://github.com/deepset-ai/COVID-QA/blob/master/data/question-answering/200423_covidQA.json)
|
15 |
+
**Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)
|
16 |
**Infrastructure**: Tesla v100
|
17 |
|
18 |
## Hyperparameters
|
|
|
48 |
## Usage
|
49 |
|
50 |
### In Haystack
|
51 |
+
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents.
|
52 |
+
To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/):
|
53 |
```python
|
54 |
+
# After running pip install haystack-ai "transformers[torch,sentencepiece]"
|
55 |
+
|
56 |
+
from haystack import Document
|
57 |
+
from haystack.components.readers import ExtractiveReader
|
58 |
+
|
59 |
+
docs = [
|
60 |
+
Document(content="Python is a popular programming language"),
|
61 |
+
Document(content="python ist eine beliebte Programmiersprache"),
|
62 |
+
]
|
63 |
+
|
64 |
+
reader = ExtractiveReader(model="deepset/roberta-base-squad2")
|
65 |
+
reader.warm_up()
|
66 |
+
|
67 |
+
question = "What is a popular programming language?"
|
68 |
+
result = reader.run(query=question, documents=docs)
|
69 |
+
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
|
70 |
```
|
71 |
+
For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline).
|
72 |
|
73 |
### In Transformers
|
74 |
```python
|
75 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
76 |
|
77 |
+
model_name = "deepset/roberta-base-squad2"
|
|
|
78 |
|
79 |
# a) Get predictions
|
80 |
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
|
|
89 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
90 |
```
|
91 |
|
92 |
+
|
93 |
## Authors
|
94 |
**Branden Chan:** branden.chan@deepset.ai
|
95 |
**Timo Möller:** timo.moeller@deepset.ai
|
|
|
98 |
**Bogdan Kostić:** bogdan.kostic@deepset.ai
|
99 |
|
100 |
## About us
|
101 |
+
|
102 |
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
|
103 |
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
104 |
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
|
|
|
108 |
</div>
|
109 |
</div>
|
110 |
|
111 |
+
[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/).
|
|
|
112 |
|
113 |
Some of our other work:
|
114 |
+
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
|
115 |
+
- [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1)
|
116 |
+
- [deepset Cloud](https://www.deepset.ai/deepset-cloud-product), [deepset Studio](https://www.deepset.ai/deepset-studio)
|
117 |
|
118 |
## Get in touch and join the Haystack community
|
119 |
|
120 |
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
|
121 |
|
122 |
+
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
|
123 |
|
124 |
+
[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai)
|
125 |
|
126 |
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|