Edit model card

MiniLM-L12-H384-uncased for QA


Language model: microsoft/MiniLM-L12-H384-uncased
Language: English
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0
Code: See an example QA pipeline on Haystack Infrastructure: 1x Tesla v100


batch_size = 12
n_epochs = 4
base_LM_model = "microsoft/MiniLM-L12-H384-uncased"
max_seq_len = 384
learning_rate = 4e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2


Evaluated on the SQuAD 2.0 dev set with the official eval script.

"exact": 76.13071675229513,
"f1": 79.49786500219953,
"total": 11873,
"HasAns_exact": 78.35695006747639,
"HasAns_f1": 85.10090269418276,
"HasAns_total": 5928,
"NoAns_exact": 73.91084945332211,
"NoAns_f1": 73.91084945332211,
"NoAns_total": 5945


In Haystack

For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in Haystack:

reader = FARMReader(model_name_or_path="deepset/minilm-uncased-squad2")
# or
reader = TransformersReader(model="deepset/minilm-uncased-squad2",tokenizer="deepset/minilm-uncased-squad2")

In Transformers

from transformers import AutoModelForQuestionAnswering,  AutoTokenizer, pipeline

model_name = "deepset/minilm-uncased-squad2"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)


Vaishali Pal: vaishali.pal@deepset.ai
Branden Chan: branden.chan@deepset.ai
Timo M枚ller: timo.moeller@deepset.ai
Malte Pietsch: malte.pietsch@deepset.ai
Tanay Soni: tanay.soni@deepset.ai

About us

deepset is the company behind the open-source NLP framework Haystack which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.

Some of our other work:

Get in touch and join the Haystack community

For more info on Haystack, visit our GitHub repo and Documentation.

We also have a Discord community open to everyone!

Twitter | LinkedIn | Discord | GitHub Discussions | Website

By the way: we're hiring!

Downloads last month
Model size
33.4M params
Tensor type

Dataset used to train deepset/minilm-uncased-squad2

Spaces using deepset/minilm-uncased-squad2 11

Evaluation results