Create autofixcode.py
#2
by
Start-GPT
- opened
- autofixcode.py +103 -0
autofixcode.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
|
| 4 |
+
class AutofixCodeAILLModel(AutoModelForCausalLM):
|
| 5 |
+
def __init__(self, *args, **kwargs):
|
| 6 |
+
super().__init__(*args, **kwargs)
|
| 7 |
+
self.decoder = AutoDecoder(self.config.decoder_hidden_size, self.config.decoder_num_layers)
|
| 8 |
+
|
| 9 |
+
@property
|
| 10 |
+
def decoder(self):
|
| 11 |
+
return self._decoder
|
| 12 |
+
|
| 13 |
+
@decoder.setter
|
| 14 |
+
def decoder(self, value):
|
| 15 |
+
self._decoder = value
|
| 16 |
+
|
| 17 |
+
class AutoDecoder(torch.nn.Module):
|
| 18 |
+
def __init__(self, hidden_size, num_layers):
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.layers = torch.nn.ModuleList([torch.nn.TransformerEncoderLayer(d_model=hidden_size, nhead=8, dim_feedforward=hidden_size, dropout=0.1) for _ in range(num_layers)])
|
| 21 |
+
|
| 22 |
+
def forward(self, x):
|
| 23 |
+
for layer in self.layers:
|
| 24 |
+
x = layer(x)
|
| 25 |
+
return x
|
| 26 |
+
|
| 27 |
+
# Load the pre-trained model and tokenizer
|
| 28 |
+
model_name_or_path = "autofixcodeai-base"
|
| 29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
| 30 |
+
ll_model = AutofixCodeAILLModel.from_pretrained(model_name_or_path)
|
| 31 |
+
|
| 32 |
+
# Define the custom dataset class for your AutofixCodeAI model
|
| 33 |
+
class CodeFixDataset(torch.utils.data.Dataset):
|
| 34 |
+
def __init__(self, code_snippets, fix_snippets):
|
| 35 |
+
self.code_snippets = code_snippets
|
| 36 |
+
self.fix_snippets = fix_snippets
|
| 37 |
+
|
| 38 |
+
def __len__(self):
|
| 39 |
+
return len(self.code_snippets)
|
| 40 |
+
|
| 41 |
+
def __getitem__(self, idx):
|
| 42 |
+
code = self.code_snippets[idx]["code"]
|
| 43 |
+
fix = self.fix_snippets[idx]["fix"]
|
| 44 |
+
input_ids = tokenizer.encode(code, max_length=512, return_tensors="pt", truncation=True)
|
| 45 |
+
attention_mask = tokenizer.encode(fix, max_length=512, return_tensors="pt", truncation=True, add_special_tokens=False)
|
| 46 |
+
labels = torch.tensor(tokenizer.encode(fix, return_tensors="pt", add_special_tokens=False)).flatten()
|
| 47 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
|
| 48 |
+
|
| 49 |
+
# Load the dataset and create a data loader
|
| 50 |
+
dataset = CodeFixDataset(code_snippets, fix_snippets)
|
| 51 |
+
data_loader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True)
|
| 52 |
+
|
| 53 |
+
# Define the custom trainer class for your AutofixCodeAI model
|
| 54 |
+
class Trainer(torch.nn.Module):
|
| 55 |
+
def __init__(self, model, data_loader, device="cuda"):
|
| 56 |
+
super().__init__()
|
| 57 |
+
self.model = model
|
| 58 |
+
self.data_loader = data_loader
|
| 59 |
+
self.device = device
|
| 60 |
+
|
| 61 |
+
def forward(self, input_ids, attention_mask, labels):
|
| 62 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
| 63 |
+
loss = self.loss_fn(output, labels)
|
| 64 |
+
return loss
|
| 65 |
+
|
| 66 |
+
@property
|
| 67 |
+
def loss_fn(self):
|
| 68 |
+
return torch.nn.CrossEntropyLoss()
|
| 69 |
+
|
| 70 |
+
# Train the model using the custom trainer class
|
| 71 |
+
trainer = Trainer(ll_model, data_loader, device="cuda")
|
| 72 |
+
for epoch in range(5):
|
| 73 |
+
trainer.model.train()
|
| 74 |
+
total_loss = 0
|
| 75 |
+
for batch in data_loader:
|
| 76 |
+
input_ids = batch["input_ids"].to(device)
|
| 77 |
+
attention_mask = batch["attention_mask"].to(device)
|
| 78 |
+
labels = batch["labels"].to(device)
|
| 79 |
+
loss = trainer(input_ids, attention_mask, labels).mean()
|
| 80 |
+
optimizer = torch.optim.Adam(trainer.model.parameters(), lr=1e-4)
|
| 81 |
+
optimizer.zero_grad()
|
| 82 |
+
loss.backward()
|
| 83 |
+
optimizer.step()
|
| 84 |
+
total_loss += loss.item()
|
| 85 |
+
print(f"Epoch {epoch+1}, Loss: {total_loss / len(data_loader)}")
|
| 86 |
+
|
| 87 |
+
# Evaluate the model using the custom trainer class
|
| 88 |
+
trainer.model.eval()
|
| 89 |
+
test_loss = 0
|
| 90 |
+
correct = 0
|
| 91 |
+
with torch.no_grad():
|
| 92 |
+
for batch in data_loader:
|
| 93 |
+
input_ids = batch["input_ids"].to(device)
|
| 94 |
+
attention_mask = batch["attention_mask"].to(device)
|
| 95 |
+
labels = batch["labels"].to(device)
|
| 96 |
+
output = trainer(input_ids, attention_mask, labels).mean()
|
| 97 |
+
loss = self.loss_fn(output, labels)
|
| 98 |
+
test_loss += loss.item()
|
| 99 |
+
_, predicted = torch.max(output, 1)
|
| 100 |
+
correct += (predicted == labels).sum().item()
|
| 101 |
+
|
| 102 |
+
accuracy = correct / len(data_loader.dataset)
|
| 103 |
+
print(f"Test Loss: {test_loss / len(data_loader)}, Accuracy: {accuracy:.2f}")
|