File size: 2,435 Bytes
08a86eb c3d228c 08a86eb efb6caf 08a86eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
base_model: mlabonne/Marcoro14-7B-slerp
license: apache-2.0
datasets:
- argilla/distilabel-intel-orca-dpo-pairs
---
# Model Card for decruz07/kellemar-DPO-Orca-Distilled-7B
<!-- Provide a quick summary of what the model is/does. -->
This model was created using mlabonne/Marcoro14-7B-slerp as the base, and finetuned with argilla/distilabel-intel-orca-dpo-pairs
## Model Details
Finetuned with these specific parameters:
Steps: 200
Learning Rate: 5e5
Beta: 0.1
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** @decruz
- **Funded by [optional]:** my full-time job
- **Finetuned from model [optional]:** mlabonne/Marcoro14-7B-slerp
## Benchmarks
**Nous**
Model| AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
|---|---|---|---|---|---|
|**kellemar-DPO-Orca-Distilled-7B-SLERP**| 45.27 | 76.42 | 65.48 | 47.21 |58.6 |
|Marcoro14-7B-slerp| 44.66 | 76.24 | 64.15 | 45.64 |57.67 |
|kellemar-DPO-Orca-Distilled-7B| 43.61 | 73.14 | 55.73 | 42.28 |53.69 |
|kellemar-Orca-DPO-7B| 43.35 | 73.43 | 54.02 | 42.24 |53.26 |
|OpenHermes-2.5-Mistral-7B| 43.07 | 73.12 | 53.04 | 40.96 |52.38 |
## Uses
You can use this for basic inference. You could probably finetune with this if you want to.
## How to Get Started with the Model
You can create a space out of this, or use basic python code to call the model directly and make inferences to it.
[More Information Needed]
## Training Details
The following was used:
`training_args = TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
gradient_checkpointing=True,
learning_rate=5e-5,
lr_scheduler_type="cosine",
max_steps=200,
save_strategy="no",
logging_steps=1,
output_dir=new_model,
optim="paged_adamw_32bit",
warmup_steps=100,
bf16=True,
report_to="wandb",
)
# Create DPO trainer
dpo_trainer = DPOTrainer(
model,
ref_model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
peft_config=peft_config,
beta=0.1,
max_prompt_length=1024,
max_length=1536,
)`
### Training Data
This was trained with https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs
### Training Procedure
Trained with Labonne's Google Colab Notebook on Finetuning Mistral 7B with DPO.
## Model Card Authors [optional]
@decruz
## Model Card Contact
@decruz on X/Twitter |