SentenceTransformer based on dbourget/pb-ds1-48K
This is a sentence-transformers model finetuned from dbourget/pb-ds1-48K. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: dbourget/pb-ds1-48K
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dbourget/pb-ds1-48K-philsim")
# Run inference
sentences = [
'This essay explores the historical and modern perspectives on the Gettier problem, highlighting the connections between this issue, skepticism, and relevance. Through methods such as historical analysis, induction, and deduction, it is found that while contextual theories and varying definitions of knowledge do not fully address skeptical challenges, they can help clarify our understanding of knowledge. Ultimately, embracing subjectivity and intuition can provide insight into what it truly means to claim knowledge.',
'Objective: In this essay, I will try to track some historical and modern stages of the discussion on the Gettier problem, and point out the interrelations of the questions that this problem raises for epistemologists, with sceptical arguments, and a so-called problem of relevance. Methods: historical analysis, induction, generalization, deduction, discourse, intuition results: Albeit the contextual theories of knowledge, the use of different definitions of knowledge, and the different ways of the uses of knowledge do not resolve all the issues that the sceptic can put forward, but they can be productive in giving clarity to a concept of knowledge for us. On the other hand, our knowledge will always have an element of intuition and subjectivity, however not equating to epistemic luck and probability. Significance novelty: the approach to the context in general, not giving up being a Subject may give us a clarity about the sense of what it means to say – “I know”.',
"Teaching competency in bioethics has been a concern since the field's inception. The first report on the teaching of contemporary bioethics was published in 1976 by The Hastings Center, which concluded that graduate programs were not necessary at the time. However, the report speculated that future developments may require new academic structures for graduate education in bioethics. The creation of a terminal degree in bioethics has its critics, with scholars debating whether bioethics is a discipline with its own methods and theoretical grounding, a multidisciplinary field, or something else entirely. Despite these debates, new bioethics training programs have emerged at all postsecondary levels in the U.S. This essay examines the number and types of programs and degrees in this growing field.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9378 |
spearman_cosine | 0.8943 |
pearson_manhattan | 0.971 |
spearman_manhattan | 0.8969 |
pearson_euclidean | 0.9711 |
spearman_euclidean | 0.8966 |
pearson_dot | 0.942 |
spearman_dot | 0.8551 |
pearson_max | 0.9711 |
spearman_max | 0.8969 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 190per_device_eval_batch_size
: 190learning_rate
: 5e-06num_train_epochs
: 2warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 190per_device_eval_batch_size
: 190per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine |
---|---|---|---|---|
0 | 0 | - | - | 0.8229 |
0.0178 | 10 | 0.0545 | - | - |
0.0355 | 20 | 0.0556 | - | - |
0.0533 | 30 | 0.0502 | - | - |
0.0710 | 40 | 0.0497 | - | - |
0.0888 | 50 | 0.0413 | - | - |
0.1066 | 60 | 0.0334 | - | - |
0.1243 | 70 | 0.0238 | - | - |
0.1421 | 80 | 0.0206 | - | - |
0.1599 | 90 | 0.0167 | - | - |
0.1776 | 100 | 0.0146 | 0.0725 | 0.8788 |
0.1954 | 110 | 0.0127 | - | - |
0.2131 | 120 | 0.0125 | - | - |
0.2309 | 130 | 0.0115 | - | - |
0.2487 | 140 | 0.0116 | - | - |
0.2664 | 150 | 0.0111 | - | - |
0.2842 | 160 | 0.0107 | - | - |
0.3020 | 170 | 0.0113 | - | - |
0.3197 | 180 | 0.0106 | - | - |
0.3375 | 190 | 0.0099 | - | - |
0.3552 | 200 | 0.0092 | 0.0207 | 0.8856 |
0.3730 | 210 | 0.0097 | - | - |
0.3908 | 220 | 0.0099 | - | - |
0.4085 | 230 | 0.0087 | - | - |
0.4263 | 240 | 0.0087 | - | - |
0.4440 | 250 | 0.0082 | - | - |
0.4618 | 260 | 0.0083 | - | - |
0.4796 | 270 | 0.0089 | - | - |
0.4973 | 280 | 0.0082 | - | - |
0.5151 | 290 | 0.0078 | - | - |
0.5329 | 300 | 0.0081 | 0.0078 | 0.8891 |
0.5506 | 310 | 0.0081 | - | - |
0.5684 | 320 | 0.0072 | - | - |
0.5861 | 330 | 0.0084 | - | - |
0.6039 | 340 | 0.0083 | - | - |
0.6217 | 350 | 0.0078 | - | - |
0.6394 | 360 | 0.0077 | - | - |
0.6572 | 370 | 0.008 | - | - |
0.6750 | 380 | 0.0073 | - | - |
0.6927 | 390 | 0.008 | - | - |
0.7105 | 400 | 0.0073 | 0.0058 | 0.8890 |
0.7282 | 410 | 0.0075 | - | - |
0.7460 | 420 | 0.0077 | - | - |
0.7638 | 430 | 0.0074 | - | - |
0.7815 | 440 | 0.0073 | - | - |
0.7993 | 450 | 0.007 | - | - |
0.8171 | 460 | 0.0043 | - | - |
0.8348 | 470 | 0.0052 | - | - |
0.8526 | 480 | 0.0046 | - | - |
0.8703 | 490 | 0.0073 | - | - |
0.8881 | 500 | 0.0056 | 0.0069 | 0.8922 |
0.9059 | 510 | 0.0059 | - | - |
0.9236 | 520 | 0.0045 | - | - |
0.9414 | 530 | 0.0033 | - | - |
0.9591 | 540 | 0.0058 | - | - |
0.9769 | 550 | 0.0056 | - | - |
0.9947 | 560 | 0.0046 | - | - |
1.0124 | 570 | 0.003 | - | - |
1.0302 | 580 | 0.0039 | - | - |
1.0480 | 590 | 0.0032 | - | - |
1.0657 | 600 | 0.0031 | 0.0029 | 0.8931 |
1.0835 | 610 | 0.0046 | - | - |
1.1012 | 620 | 0.003 | - | - |
1.1190 | 630 | 0.0021 | - | - |
1.1368 | 640 | 0.0031 | - | - |
1.1545 | 650 | 0.0035 | - | - |
1.1723 | 660 | 0.0033 | - | - |
1.1901 | 670 | 0.0024 | - | - |
1.2078 | 680 | 0.0012 | - | - |
1.2256 | 690 | 0.0075 | - | - |
1.2433 | 700 | 0.0028 | 0.0036 | 0.8945 |
1.2611 | 710 | 0.0033 | - | - |
1.2789 | 720 | 0.0023 | - | - |
1.2966 | 730 | 0.0034 | - | - |
1.3144 | 740 | 0.0018 | - | - |
1.3321 | 750 | 0.0016 | - | - |
1.3499 | 760 | 0.0025 | - | - |
1.3677 | 770 | 0.002 | - | - |
1.3854 | 780 | 0.0016 | - | - |
1.4032 | 790 | 0.0018 | - | - |
1.4210 | 800 | 0.003 | 0.0027 | 0.8944 |
1.4387 | 810 | 0.0018 | - | - |
1.4565 | 820 | 0.0008 | - | - |
1.4742 | 830 | 0.0014 | - | - |
1.4920 | 840 | 0.0025 | - | - |
1.5098 | 850 | 0.0026 | - | - |
1.5275 | 860 | 0.0012 | - | - |
1.5453 | 870 | 0.001 | - | - |
1.5631 | 880 | 0.001 | - | - |
1.5808 | 890 | 0.0012 | - | - |
1.5986 | 900 | 0.0021 | 0.0021 | 0.8952 |
1.6163 | 910 | 0.0016 | - | - |
1.6341 | 920 | 0.0008 | - | - |
1.6519 | 930 | 0.0008 | - | - |
1.6696 | 940 | 0.0009 | - | - |
1.6874 | 950 | 0.0004 | - | - |
1.7052 | 960 | 0.0003 | - | - |
1.7229 | 970 | 0.0007 | - | - |
1.7407 | 980 | 0.0007 | - | - |
1.7584 | 990 | 0.0011 | - | - |
1.7762 | 1000 | 0.0007 | 0.0029 | 0.8952 |
1.7940 | 1010 | 0.0008 | - | - |
1.8117 | 1020 | 0.001 | - | - |
1.8295 | 1030 | 0.0006 | - | - |
1.8472 | 1040 | 0.0006 | - | - |
1.8650 | 1050 | 0.0015 | - | - |
1.8828 | 1060 | 0.0009 | - | - |
1.9005 | 1070 | 0.0005 | - | - |
1.9183 | 1080 | 0.0006 | - | - |
1.9361 | 1090 | 0.0021 | - | - |
1.9538 | 1100 | 0.0009 | 0.0023 | 0.8943 |
1.9716 | 1110 | 0.0007 | - | - |
1.9893 | 1120 | 0.0003 | - | - |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.2.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for dbourget/pb-ds1-48K-philsim
Base model
dbourget/pb-ds1-48KEvaluation results
- Pearson Cosine on sts devself-reported0.938
- Spearman Cosine on sts devself-reported0.894
- Pearson Manhattan on sts devself-reported0.971
- Spearman Manhattan on sts devself-reported0.897
- Pearson Euclidean on sts devself-reported0.971
- Spearman Euclidean on sts devself-reported0.897
- Pearson Dot on sts devself-reported0.942
- Spearman Dot on sts devself-reported0.855
- Pearson Max on sts devself-reported0.971
- Spearman Max on sts devself-reported0.897