YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

algebra_linear_1d


language: en datasets: - algebra_linear_1d

This is a t5-small fine-tuned version on the math_dataset/algebra_linear_1d for solving algebra 1d equations mission.

To load the model: (necessary packages: !pip install transformers sentencepiece)

from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("dbernsohn/algebra_linear_1d")
model = AutoModelWithLMHead.from_pretrained("dbernsohn/algebra_linear_1d")

You can then use this model to solve algebra 1d equations into numbers.

query = "Solve 0 = 1026*x - 2474 + 46592 for x"
input_text = f"{query} </s>"
features = tokenizer([input_text], return_tensors='pt')
model.to('cuda')
output = model.generate(input_ids=features['input_ids'].cuda(), 
                        attention_mask=features['attention_mask'].cuda())

tokenizer.decode(output[0])
# <pad> -41</s>

Another examples:

  • Solve 1112r + 1418r - 5220 = 587*r - 28536 for r.
  • Answer: -12 Pred: -12

  • Solve -119k + 6k - 117 - 352 = 322 for k.
  • Answer: -7 Pred: -7

  • Solve -547 = -62*t + 437 - 798 for t.
  • Answer: 3 Pred: 3

  • Solve 3j - 3j + 0j - 4802 = 98j for j.
  • Answer: -49 Pred: -49

  • Solve 3047n - 6130n - 1700 = -3049*n for n.
  • Answer: -50 Pred: -50

  • Solve 121i + 1690 = 76i - 128*i + 133 for i.
  • Answer: -9 Pred: -9

The whole training process and hyperparameters are in my GitHub repo

Created by Dor Bernsohn

Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.