File size: 2,294 Bytes
69aa126 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- food101
metrics:
- accuracy
model-index:
- name: my_food_model
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: food101
type: food101
config: default
split: train[:5000]
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.915
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_food_model
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5005
- Accuracy: 0.915
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.2078 | 0.99 | 62 | 2.9572 | 0.787 |
| 1.7221 | 2.0 | 125 | 1.6469 | 0.861 |
| 1.2109 | 2.99 | 187 | 1.1555 | 0.894 |
| 0.81 | 4.0 | 250 | 0.8631 | 0.91 |
| 0.6486 | 4.99 | 312 | 0.7190 | 0.908 |
| 0.5162 | 6.0 | 375 | 0.6194 | 0.91 |
| 0.4567 | 6.99 | 437 | 0.5399 | 0.924 |
| 0.43 | 8.0 | 500 | 0.5146 | 0.922 |
| 0.3723 | 8.99 | 562 | 0.4914 | 0.922 |
| 0.3938 | 9.92 | 620 | 0.5005 | 0.915 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|