query-gen / README.md
davanstrien's picture
davanstrien HF staff
End of training
596b8a2 verified
---
license: llama3
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B
model-index:
- name: query-gen
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
hub_model_id: davanstrien/query-gen
datasets:
- path: davanstrien/query-gen
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./lora-out
sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name: query
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 10
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# query-gen
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2679
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 160
- total_eval_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.8337 | 0.0071 | 1 | 2.8390 |
| 1.414 | 0.2540 | 36 | 1.4018 |
| 1.3212 | 0.5079 | 72 | 1.3332 |
| 1.304 | 0.7619 | 108 | 1.3042 |
| 1.2874 | 1.0159 | 144 | 1.2900 |
| 1.229 | 1.2522 | 180 | 1.2835 |
| 1.2247 | 1.5062 | 216 | 1.2779 |
| 1.2362 | 1.7601 | 252 | 1.2708 |
| 1.2364 | 2.0141 | 288 | 1.2663 |
| 1.1734 | 2.2504 | 324 | 1.2691 |
| 1.1781 | 2.5044 | 360 | 1.2683 |
| 1.1995 | 2.7584 | 396 | 1.2658 |
| 1.1861 | 3.0123 | 432 | 1.2626 |
| 1.1332 | 3.2487 | 468 | 1.2680 |
| 1.1438 | 3.5026 | 504 | 1.2680 |
| 1.1553 | 3.7566 | 540 | 1.2679 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1