File size: 1,983 Bytes
4e95829 8401948 4e95829 8401948 4e95829 8401948 4e95829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: vit-real-fake-classification-v3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-real-fake-classification-v3
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0541
- Accuracy: 0.9817
- F1: 0.9834
- Recall: 0.9834
- Precision: 0.9834
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| 0.2481 | 1.0 | 233 | 0.0846 | 0.9667 | 0.9699 | 0.9737 | 0.9662 |
| 0.1881 | 2.0 | 466 | 0.0773 | 0.9726 | 0.9756 | 0.9912 | 0.9604 |
| 0.1036 | 3.0 | 699 | 0.0691 | 0.9774 | 0.9796 | 0.9815 | 0.9777 |
| 0.0007 | 4.0 | 932 | 0.0698 | 0.9817 | 0.9835 | 0.9854 | 0.9816 |
| 0.0029 | 5.0 | 1165 | 0.0541 | 0.9817 | 0.9834 | 0.9834 | 0.9834 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|