max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
test/IECore/BasicPreset.py
ericmehl/cortex
386
27
########################################################################## # # Copyright (c) 2010-2012, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## from __future__ import with_statement import os import sys import shutil import unittest import IECore class TestBasicPreset( unittest.TestCase ) : def testCopy( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.FloatParameter( "b", "", 1.0 ), ] ) testObj2 = IECore.Parameterised( "testParameterised2" ) testObj2.parameters().addParameters( [ IECore.BoolParameter( "a", "", False ), IECore.FloatParameter( "c", "", 0.0 ), ] ) p = IECore.BasicPreset( testObj, testObj.parameters() ) self.assertTrue( p.applicableTo( testObj, testObj.parameters() ) ) self.assertFalse( p.applicableTo( testObj2, testObj2.parameters() ) ) testObj.parameters()["a"].setTypedValue( False ) testObj.parameters()["b"].setTypedValue( 0.0 ) p( testObj, testObj.parameters() ) self.assertEqual( testObj.parameters()["a"].getTypedValue(), True ) self.assertEqual( testObj.parameters()["b"].getTypedValue(), 1.0 ) p2 = IECore.BasicPreset( testObj, testObj.parameters(), parameters=( testObj.parameters()["a"], ) ) self.assertTrue( p2.applicableTo( testObj, testObj.parameters() ) ) self.assertTrue( p2.applicableTo( testObj2, testObj.parameters() ) ) p2( testObj2, testObj2.parameters() ) self.assertEqual( testObj2.parameters()["a"].getTypedValue(), True ) self.assertEqual( testObj2.parameters()["c"].getTypedValue(), 0.0 ) def testLoad( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.FloatParameter( "b", "", 1.0 ), ] ) testObj2 = IECore.Parameterised( "testParameterised1" ) testObj2.parameters().addParameters( [ IECore.BoolParameter( "a", "", False ), IECore.FloatParameter( "c", "", 0.0 ), ] ) savePath = os.path.abspath( os.path.join( os.path.dirname( __file__ ), "data", "basicPreset" ) ) messageHandler = IECore.CapturingMessageHandler() with messageHandler : p = IECore.BasicPreset( os.path.join( savePath, "basicPresetLoadTest", "basicPresetLoadTest-1.cob" ) ) self.assertEqual( len( messageHandler.messages ), 0 ) self.assertTrue( p.applicableTo( testObj, testObj.parameters() ) ) self.assertFalse( p.applicableTo( testObj2, testObj2.parameters() ) ) testObj.parameters()["a"].setTypedValue( False ) testObj.parameters()["b"].setTypedValue( 0.0 ) p( testObj, testObj.parameters() ) self.assertEqual( testObj.parameters()["a"].getTypedValue(), True ) self.assertEqual( testObj.parameters()["b"].getTypedValue(), 1.0 ) def testSave( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.FloatParameter( "b", "", 1.0 ), ] ) testObj2 = IECore.Parameterised( "testParameterised1" ) testObj2.parameters().addParameters( [ IECore.BoolParameter( "a", "", False ), IECore.FloatParameter( "c", "", 0.0 ), ] ) savePath = os.path.abspath( os.path.join( os.path.dirname( __file__ ), "data", "basicPreset" ) ) preset = IECore.BasicPreset( testObj, testObj.parameters() ) # Save for the classLoader and check its there, we test the 'loadability' later... preset.save( savePath, "basicPresetTest" ) self.assertTrue( os.path.isfile( os.path.join( savePath, "basicPresetTest", "basicPresetTest-1.cob" ) ) ) self.assertTrue( os.path.isfile( os.path.join( savePath, "basicPresetTest", "basicPresetTest-1.py" ) ) ) # save without the classLoader and check its there preset.save( savePath, "basicPresetTest", classLoadable=False ) self.assertTrue( os.path.isfile( os.path.join( savePath, "basicPresetTest.cob" ) ) ) # reload p = IECore.BasicPreset( os.path.join( savePath, "basicPresetTest.cob" ) ) self.assertTrue( p.applicableTo( testObj, testObj.parameters() ) ) self.assertFalse( p.applicableTo( testObj2, testObj2.parameters() ) ) testObj.parameters()["a"].setTypedValue( False ) testObj.parameters()["b"].setTypedValue( 0.0 ) p( testObj, testObj.parameters() ) self.assertEqual( testObj.parameters()["a"].getTypedValue(), True ) self.assertEqual( testObj.parameters()["b"].getTypedValue(), 1.0 ) preset2 = IECore.BasicPreset( testObj, testObj.parameters(), parameters=( testObj.parameters()["a"], ) ) preset2.save( savePath, "basicPresetTest2", classLoadable=False ) #reload p2 = IECore.BasicPreset( os.path.join( savePath, "basicPresetTest2.cob" ) ) self.assertTrue( p2.applicableTo( testObj, testObj.parameters() ) ) self.assertTrue( p2.applicableTo( testObj2, testObj.parameters() ) ) p2( testObj2, testObj2.parameters() ) self.assertEqual( testObj2.parameters()["a"].getTypedValue(), True ) self.assertEqual( testObj2.parameters()["c"].getTypedValue(), 0.0 ) def testClassLoader( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.FloatParameter( "b", "", 1.0 ), ] ) savePath = os.path.abspath( os.path.join( os.path.dirname( __file__ ), "data", "basicPreset" ) ) preset = IECore.BasicPreset( testObj, testObj.parameters() ) preset.save( savePath, "basicPresetTestClassLoader" ) # make sure that no messages are emitted during loading messageHandler = IECore.CapturingMessageHandler() with messageHandler : loader = IECore.ClassLoader( IECore.SearchPath( savePath ) ) p = loader.load( "basicPresetTestClassLoader" )() self.assertEqual( len( messageHandler.messages ), 0 ) self.assertTrue( isinstance( p, IECore.BasicPreset ) ) p.metadata() def testClasses( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.ClassParameter( "b", "", "IECORE_OP_PATHS", os.path.join( "maths", "multiply" ), 2 ), ] ) testObj2 = IECore.Parameterised( "testParameterised2" ) testObj2.parameters().addParameters( [ IECore.ClassParameter( "c", "", "IECORE_OP_PATHS" ), ] ) classes1 = testObj.parameters()["b"].getClass( True ) classes2 = testObj2.parameters()["c"].getClass( True ) self.assertNotEqual( classes1[1:], classes2[1:] ) p = IECore.BasicPreset( testObj, testObj.parameters()["b"] ) self.assertTrue( p.applicableTo( testObj, testObj.parameters()["b"] ) ) self.assertFalse( p.applicableTo( testObj, testObj.parameters() ) ) self.assertTrue( p.applicableTo( testObj2, testObj2.parameters()["c"] ) ) p( testObj2, testObj2.parameters()["c"] ) classes1 = testObj.parameters()["b"].getClass( True ) classes2 = testObj2.parameters()["c"].getClass( True ) self.assertEqual( classes1[1:], classes2[1:] ) def testClassVectors( self ) : testObj = IECore.Parameterised( "testParameterised1" ) testObj.parameters().addParameters( [ IECore.BoolParameter( "a", "", True ), IECore.ClassVectorParameter( "b", "", "IECORE_OP_PATHS" ), ] ) testObj.parameters()["b"].setClasses( [ ( "mult", os.path.join( "maths", "multiply" ), 2 ), ( "coIO", "compoundObjectInOut", 1 ), ] ) testObj2 = IECore.Parameterised( "testParameterised2" ) testObj2.parameters().addParameters( [ IECore.ClassVectorParameter( "c", "", "IECORE_OP_PATHS" ), ] ) classes1 = [ c[1:] for c in testObj.parameters()["b"].getClasses( True ) ] classes2 = [ c[1:] for c in testObj2.parameters()["c"].getClasses( True ) ] self.assertNotEqual( classes1, classes2 ) p = IECore.BasicPreset( testObj, testObj.parameters()["b"] ) self.assertTrue( p.applicableTo( testObj, testObj.parameters()["b"] ) ) self.assertFalse( p.applicableTo( testObj, testObj.parameters() ) ) self.assertTrue( p.applicableTo( testObj2, testObj2.parameters()["c"] ) ) p( testObj2, testObj2.parameters()["c"] ) classes1 = [ c[1:] for c in testObj.parameters()["b"].getClasses( True ) ] classes2 = [ c[1:] for c in testObj2.parameters()["c"].getClasses( True ) ] self.assertEqual( classes1, classes2 ) def testCompoundVectorParameter( self ) : p = IECore.Parameterised( "test" ) p.parameters().addParameters( [ IECore.BoolParameter( "a", "", False ), IECore.CompoundVectorParameter( "c", "", members = [ IECore.StringVectorParameter( "s", "", IECore.StringVectorData() ), IECore.BoolVectorParameter( "b", "", IECore.BoolVectorData() ), ] ) ] ) p["c"]["s"].setValue( IECore.StringVectorData( [ "1", "2", "3" ] ) ) p["c"]["b"].setValue( IECore.BoolVectorData( [ True, False, True ] ) ) v = p.parameters().getValue().copy() preset = IECore.BasicPreset( p, p.parameters() ) self.assertTrue( preset.applicableTo( p, p.parameters() ) ) p.parameters().setValue( p.parameters().defaultValue ) self.assertNotEqual( p.parameters().getValue(), v ) preset( p, p.parameters() ) self.assertEqual( p.parameters().getValue(), v ) def tearDown( self ) : savePath = os.path.abspath( os.path.join( os.path.dirname( __file__ ), "data", "basicPreset" ) ) paths = ( os.path.join( savePath, "basicPresetTest" ), os.path.join( savePath, "basicPresetTest.cob" ), os.path.join( savePath, "basicPresetTest2.cob" ), os.path.join( savePath, "basicPresetTestClassLoader" ), ) for p in paths : if os.path.isdir( p ) : shutil.rmtree( p ) elif os.path.isfile( p ) : os.remove( p ) if __name__ == "__main__": unittest.main()
src/biotite/copyable.py
danijoo/biotite
208
56
<filename>src/biotite/copyable.py # This source code is part of the Biotite package and is distributed # under the 3-Clause BSD License. Please see 'LICENSE.rst' for further # information. __name__ = "biotite" __author__ = "<NAME>" __all__ = ["Copyable"] import abc class Copyable(metaclass=abc.ABCMeta): """ Base class for all objects, that should be copyable. The public method `copy()` first creates a fresh instance of the class of the instance, that is copied via the `__copy_create__()` method. All variables, that could not be set via the constructor, are then copied via `__copy_fill__()`, starting with the method in the uppermost base class and ending with the class of the instance to be copied. This approach solves the problem of encapsulated variables in superclasses. """ def copy(self): """ Create a deep copy of this object. Returns ------- copy A copy of this object. """ clone = self.__copy_create__() self.__copy_fill__(clone) return clone def __copy_create__(self): """ Instantiate a new object of this class. Only the constructor should be called in this method. All further attributes, that need to be copied are handled in `__copy_fill__()` Do not call the `super()` method here. This method must be overridden, if the constructor takes parameters. Returns ------- copy A freshly instantiated copy of *self*. """ return type(self)() def __copy_fill__(self, clone): """ Copy all necessary attributes to the new object. Always call the `super()` method as first statement. Parameters ---------- clone The freshly instantiated copy of *self*. """ pass
tests/keras/layers/wrappers_test.py
kalyc/keras-apache-mxnet
300
59
<filename>tests/keras/layers/wrappers_test.py<gh_stars>100-1000 import pytest import numpy as np import copy from numpy.testing import assert_allclose from keras.utils import CustomObjectScope from keras.layers import wrappers, Input, Layer from keras.layers import RNN from keras import layers from keras.models import Sequential, Model, model_from_json from keras import backend as K from keras.utils.generic_utils import object_list_uid, to_list @pytest.mark.skipif(K.backend() == 'mxnet', reason='MXNet backend does not support TimeDistributed and RNN yet') def test_TimeDistributed(): # first, test with Dense layer model = Sequential() model.add(wrappers.TimeDistributed(layers.Dense(2), input_shape=(3, 4))) model.add(layers.Activation('relu')) model.compile(optimizer='rmsprop', loss='mse') model.fit(np.random.random((10, 3, 4)), np.random.random((10, 3, 2)), epochs=1, batch_size=10) # test config model.get_config() # test when specifying a batch_input_shape test_input = np.random.random((1, 3, 4)) test_output = model.predict(test_input) weights = model.layers[0].get_weights() reference = Sequential() reference.add(wrappers.TimeDistributed(layers.Dense(2), batch_input_shape=(1, 3, 4))) reference.add(layers.Activation('relu')) reference.compile(optimizer='rmsprop', loss='mse') reference.layers[0].set_weights(weights) reference_output = reference.predict(test_input) assert_allclose(test_output, reference_output, atol=1e-05) # test with Embedding model = Sequential() model.add(wrappers.TimeDistributed(layers.Embedding(5, 6), batch_input_shape=(10, 3, 4), dtype='int32')) model.compile(optimizer='rmsprop', loss='mse') model.fit(np.random.randint(5, size=(10, 3, 4), dtype='int32'), np.random.random((10, 3, 4, 6)), epochs=1, batch_size=10) # compare to not using batch_input_shape test_input = np.random.randint(5, size=(10, 3, 4), dtype='int32') test_output = model.predict(test_input) weights = model.layers[0].get_weights() reference = Sequential() reference.add(wrappers.TimeDistributed(layers.Embedding(5, 6), input_shape=(3, 4), dtype='int32')) reference.compile(optimizer='rmsprop', loss='mse') reference.layers[0].set_weights(weights) reference_output = reference.predict(test_input) assert_allclose(test_output, reference_output, atol=1e-05) # test with Conv2D model = Sequential() model.add(wrappers.TimeDistributed(layers.Conv2D(5, (2, 2), padding='same'), input_shape=(2, 4, 4, 3))) model.add(layers.Activation('relu')) model.compile(optimizer='rmsprop', loss='mse') model.train_on_batch(np.random.random((1, 2, 4, 4, 3)), np.random.random((1, 2, 4, 4, 5))) model = model_from_json(model.to_json()) model.summary() # test stacked layers model = Sequential() model.add(wrappers.TimeDistributed(layers.Dense(2), input_shape=(3, 4))) model.add(wrappers.TimeDistributed(layers.Dense(3))) model.add(layers.Activation('relu')) model.compile(optimizer='rmsprop', loss='mse') model.fit(np.random.random((10, 3, 4)), np.random.random((10, 3, 3)), epochs=1, batch_size=10) # test wrapping Sequential model model = Sequential() model.add(layers.Dense(3, input_dim=2)) outer_model = Sequential() outer_model.add(wrappers.TimeDistributed(model, input_shape=(3, 2))) outer_model.compile(optimizer='rmsprop', loss='mse') outer_model.fit(np.random.random((10, 3, 2)), np.random.random((10, 3, 3)), epochs=1, batch_size=10) # test with functional API x = Input(shape=(3, 2)) y = wrappers.TimeDistributed(model)(x) outer_model = Model(x, y) outer_model.compile(optimizer='rmsprop', loss='mse') outer_model.fit(np.random.random((10, 3, 2)), np.random.random((10, 3, 3)), epochs=1, batch_size=10) # test with BatchNormalization model = Sequential() model.add(wrappers.TimeDistributed( layers.BatchNormalization(center=True, scale=True), name='bn', input_shape=(10, 2))) model.compile(optimizer='rmsprop', loss='mse') # Assert that mean and variance are 0 and 1. td = model.layers[0] assert np.array_equal(td.get_weights()[2], np.array([0, 0])) assert np.array_equal(td.get_weights()[3], np.array([1, 1])) # Train model.train_on_batch(np.random.normal(loc=2, scale=2, size=(1, 10, 2)), np.broadcast_to(np.array([0, 1]), (1, 10, 2))) # Assert that mean and variance changed. assert not np.array_equal(td.get_weights()[2], np.array([0, 0])) assert not np.array_equal(td.get_weights()[3], np.array([1, 1])) # Verify input_map has one mapping from inputs to reshaped inputs. uid = object_list_uid(model.inputs) assert len(td._input_map.keys()) == 1 assert uid in td._input_map assert K.int_shape(td._input_map[uid]) == (None, 2) @pytest.mark.skipif(K.backend() == 'mxnet', reason='MXNet backend does not support TimeDistributed and RNN yet') @pytest.mark.skipif((K.backend() == 'cntk'), reason='Flaky with CNTK backend') def test_TimeDistributed_learning_phase(): # test layers that need learning_phase to be set np.random.seed(1234) x = Input(shape=(3, 2)) y = wrappers.TimeDistributed(layers.Dropout(.999))(x, training=True) model = Model(x, y) y = model.predict(np.random.random((10, 3, 2))) assert_allclose(np.mean(y), 0., atol=1e-1, rtol=1e-1) @pytest.mark.skipif(K.backend() == 'mxnet', reason='MXNet backend does not support TimeDistributed and RNN yet') def test_TimeDistributed_trainable(): # test layers that need learning_phase to be set x = Input(shape=(3, 2)) layer = wrappers.TimeDistributed(layers.BatchNormalization()) _ = layer(x) assert len(layer.updates) == 2 assert len(layer.trainable_weights) == 2 layer.trainable = False assert len(layer.updates) == 0 assert len(layer.trainable_weights) == 0 layer.trainable = True assert len(layer.updates) == 2 assert len(layer.trainable_weights) == 2 @pytest.mark.skipif((K.backend() == 'cntk' or K.backend() == 'mxnet'), reason='Unknown timestamps for RNN not supported in CNTK and MXNet.') def test_TimeDistributed_with_masked_embedding_and_unspecified_shape(): # test with unspecified shape and Embeddings with mask_zero model = Sequential() model.add(wrappers.TimeDistributed(layers.Embedding(5, 6, mask_zero=True), input_shape=(None, None))) # the shape so far: (N, t_1, t_2, 6) model.add(wrappers.TimeDistributed(layers.SimpleRNN(7, return_sequences=True))) model.add(wrappers.TimeDistributed(layers.SimpleRNN(8, return_sequences=False))) model.add(layers.SimpleRNN(1, return_sequences=False)) model.compile(optimizer='rmsprop', loss='mse') model_input = np.random.randint(low=1, high=5, size=(10, 3, 4), dtype='int32') for i in range(4): model_input[i, i:, i:] = 0 model.fit(model_input, np.random.random((10, 1)), epochs=1, batch_size=10) mask_outputs = [model.layers[0].compute_mask(model.input)] for layer in model.layers[1:]: mask_outputs.append(layer.compute_mask(layer.input, mask_outputs[-1])) func = K.function([model.input], mask_outputs[:-1]) mask_outputs_val = func([model_input]) ref_mask_val_0 = model_input > 0 # embedding layer ref_mask_val_1 = ref_mask_val_0 # first RNN layer ref_mask_val_2 = np.any(ref_mask_val_1, axis=-1) # second RNN layer ref_mask_val = [ref_mask_val_0, ref_mask_val_1, ref_mask_val_2] for i in range(3): assert np.array_equal(mask_outputs_val[i], ref_mask_val[i]) assert mask_outputs[-1] is None # final layer @pytest.mark.skipif(K.backend() == 'mxnet', reason='MXNet backend does not support TimeDistributed and RNN yet') def test_TimeDistributed_with_masking_layer(): # test with Masking layer model = Sequential() model.add(wrappers.TimeDistributed(layers.Masking(mask_value=0.,), input_shape=(None, 4))) model.add(wrappers.TimeDistributed(layers.Dense(5))) model.compile(optimizer='rmsprop', loss='mse') model_input = np.random.randint(low=1, high=5, size=(10, 3, 4)) for i in range(4): model_input[i, i:, :] = 0. model.compile(optimizer='rmsprop', loss='mse') model.fit(model_input, np.random.random((10, 3, 5)), epochs=1, batch_size=6) mask_outputs = [model.layers[0].compute_mask(model.input)] mask_outputs += [model.layers[1].compute_mask(model.layers[1].input, mask_outputs[-1])] func = K.function([model.input], mask_outputs) mask_outputs_val = func([model_input]) assert np.array_equal(mask_outputs_val[0], np.any(model_input, axis=-1)) assert np.array_equal(mask_outputs_val[1], np.any(model_input, axis=-1)) def test_regularizers(): model = Sequential() model.add(wrappers.TimeDistributed( layers.Dense(2, kernel_regularizer='l1'), input_shape=(3, 4))) model.add(layers.Activation('relu')) model.compile(optimizer='rmsprop', loss='mse') assert len(model.layers[0].layer.losses) == 1 assert len(model.layers[0].losses) == 1 assert len(model.layers[0].get_losses_for(None)) == 1 assert len(model.losses) == 1 model = Sequential() model.add(wrappers.TimeDistributed( layers.Dense(2, activity_regularizer='l1'), input_shape=(3, 4))) model.add(layers.Activation('relu')) model.compile(optimizer='rmsprop', loss='mse') assert len(model.losses) == 1 def test_Bidirectional(): rnn = layers.SimpleRNN samples = 2 dim = 2 timesteps = 2 output_dim = 2 dropout_rate = 0.2 for mode in ['sum', 'concat']: x = np.random.random((samples, timesteps, dim)) target_dim = 2 * output_dim if mode == 'concat' else output_dim y = np.random.random((samples, target_dim)) # test with Sequential model model = Sequential() model.add(wrappers.Bidirectional(rnn(output_dim, dropout=dropout_rate, recurrent_dropout=dropout_rate), merge_mode=mode, input_shape=(timesteps, dim))) model.compile(loss='mse', optimizer='sgd') model.fit(x, y, epochs=1, batch_size=1) # test config model.get_config() model = model_from_json(model.to_json()) model.summary() # test stacked bidirectional layers model = Sequential() model.add(wrappers.Bidirectional(rnn(output_dim, return_sequences=True), merge_mode=mode, input_shape=(timesteps, dim))) model.add(wrappers.Bidirectional(rnn(output_dim), merge_mode=mode)) model.compile(loss='mse', optimizer='sgd') model.fit(x, y, epochs=1, batch_size=1) # test with functional API inputs = Input((timesteps, dim)) outputs = wrappers.Bidirectional(rnn(output_dim, dropout=dropout_rate, recurrent_dropout=dropout_rate), merge_mode=mode)(inputs) model = Model(inputs, outputs) model.compile(loss='mse', optimizer='sgd') model.fit(x, y, epochs=1, batch_size=1) # Bidirectional and stateful inputs = Input(batch_shape=(1, timesteps, dim)) outputs = wrappers.Bidirectional(rnn(output_dim, stateful=True), merge_mode=mode)(inputs) model = Model(inputs, outputs) model.compile(loss='mse', optimizer='sgd') model.fit(x, y, epochs=1, batch_size=1) @pytest.mark.skipif((K.backend() == 'cntk'), reason='Unknown timestamps not supported in CNTK.') def test_Bidirectional_dynamic_timesteps(): # test with functional API with dynamic length rnn = layers.SimpleRNN samples = 2 dim = 2 timesteps = 2 output_dim = 2 dropout_rate = 0.2 for mode in ['sum', 'concat']: x = np.random.random((samples, timesteps, dim)) target_dim = 2 * output_dim if mode == 'concat' else output_dim y = np.random.random((samples, target_dim)) inputs = Input((None, dim)) outputs = wrappers.Bidirectional(rnn(output_dim, dropout=dropout_rate, recurrent_dropout=dropout_rate), merge_mode=mode)(inputs) model = Model(inputs, outputs) model.compile(loss='mse', optimizer='sgd') model.fit(x, y, epochs=1, batch_size=1) @pytest.mark.parametrize('merge_mode', ['sum', 'mul', 'ave', 'concat', None]) def test_Bidirectional_merged_value(merge_mode): rnn = layers.LSTM samples = 2 dim = 5 timesteps = 3 units = 3 X = [np.random.rand(samples, timesteps, dim)] if merge_mode == 'sum': merge_func = lambda y, y_rev: y + y_rev elif merge_mode == 'mul': merge_func = lambda y, y_rev: y * y_rev elif merge_mode == 'ave': merge_func = lambda y, y_rev: (y + y_rev) / 2 elif merge_mode == 'concat': merge_func = lambda y, y_rev: np.concatenate((y, y_rev), axis=-1) else: merge_func = lambda y, y_rev: [y, y_rev] # basic case inputs = Input((timesteps, dim)) layer = wrappers.Bidirectional(rnn(units, return_sequences=True), merge_mode=merge_mode) f_merged = K.function([inputs], to_list(layer(inputs))) f_forward = K.function([inputs], [layer.forward_layer.call(inputs)]) f_backward = K.function([inputs], [K.reverse(layer.backward_layer.call(inputs), 1)]) y_merged = f_merged(X) y_expected = to_list(merge_func(f_forward(X)[0], f_backward(X)[0])) assert len(y_merged) == len(y_expected) for x1, x2 in zip(y_merged, y_expected): assert_allclose(x1, x2, atol=1e-5) # test return_state inputs = Input((timesteps, dim)) layer = wrappers.Bidirectional(rnn(units, return_state=True), merge_mode=merge_mode) f_merged = K.function([inputs], layer(inputs)) f_forward = K.function([inputs], layer.forward_layer.call(inputs)) f_backward = K.function([inputs], layer.backward_layer.call(inputs)) n_states = len(layer.layer.states) y_merged = f_merged(X) y_forward = f_forward(X) y_backward = f_backward(X) y_expected = to_list(merge_func(y_forward[0], y_backward[0])) assert len(y_merged) == len(y_expected) + n_states * 2 for x1, x2 in zip(y_merged, y_expected): assert_allclose(x1, x2, atol=1e-5) # test if the state of a BiRNN is the concatenation of the underlying RNNs y_merged = y_merged[-n_states * 2:] y_forward = y_forward[-n_states:] y_backward = y_backward[-n_states:] for state_birnn, state_inner in zip(y_merged, y_forward + y_backward): assert_allclose(state_birnn, state_inner, atol=1e-5) @pytest.mark.skipif(K.backend() == 'theano' or K.backend() == 'mxnet', reason='Not supported.') @pytest.mark.parametrize('merge_mode', ['sum', 'concat', None]) def test_Bidirectional_dropout(merge_mode): rnn = layers.LSTM samples = 2 dim = 5 timesteps = 3 units = 3 X = [np.random.rand(samples, timesteps, dim)] inputs = Input((timesteps, dim)) wrapped = wrappers.Bidirectional(rnn(units, dropout=0.2, recurrent_dropout=0.2), merge_mode=merge_mode) outputs = to_list(wrapped(inputs, training=True)) assert all(not getattr(x, '_uses_learning_phase') for x in outputs) inputs = Input((timesteps, dim)) wrapped = wrappers.Bidirectional(rnn(units, dropout=0.2, return_state=True), merge_mode=merge_mode) outputs = to_list(wrapped(inputs)) assert all(x._uses_learning_phase for x in outputs) model = Model(inputs, outputs) assert model.uses_learning_phase y1 = to_list(model.predict(X)) y2 = to_list(model.predict(X)) for x1, x2 in zip(y1, y2): assert_allclose(x1, x2, atol=1e-5) def test_Bidirectional_state_reuse(): rnn = layers.LSTM samples = 2 dim = 5 timesteps = 3 units = 3 input1 = Input((timesteps, dim)) layer = wrappers.Bidirectional(rnn(units, return_state=True, return_sequences=True)) state = layer(input1)[1:] # test passing invalid initial_state: passing a tensor input2 = Input((timesteps, dim)) with pytest.raises(ValueError): output = wrappers.Bidirectional(rnn(units))(input2, initial_state=state[0]) # test valid usage: passing a list output = wrappers.Bidirectional(rnn(units))(input2, initial_state=state) model = Model([input1, input2], output) assert len(model.layers) == 4 assert isinstance(model.layers[-1].input, list) inputs = [np.random.rand(samples, timesteps, dim), np.random.rand(samples, timesteps, dim)] outputs = model.predict(inputs) @pytest.mark.skipif(K.backend() == 'mxnet', reason='MXNet backend does not support custom RNN cell yet') def test_Bidirectional_with_constants(): class RNNCellWithConstants(Layer): def __init__(self, units, **kwargs): self.units = units self.state_size = units super(RNNCellWithConstants, self).__init__(**kwargs) def build(self, input_shape): if not isinstance(input_shape, list): raise TypeError('expects constants shape') [input_shape, constant_shape] = input_shape # will (and should) raise if more than one constant passed self.input_kernel = self.add_weight( shape=(input_shape[-1], self.units), initializer='uniform', name='kernel') self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), initializer='uniform', name='recurrent_kernel') self.constant_kernel = self.add_weight( shape=(constant_shape[-1], self.units), initializer='uniform', name='constant_kernel') self.built = True def call(self, inputs, states, constants): [prev_output] = states [constant] = constants h_input = K.dot(inputs, self.input_kernel) h_state = K.dot(prev_output, self.recurrent_kernel) h_const = K.dot(constant, self.constant_kernel) output = h_input + h_state + h_const return output, [output] def get_config(self): config = {'units': self.units} base_config = super(RNNCellWithConstants, self).get_config() return dict(list(base_config.items()) + list(config.items())) # Test basic case. x = Input((5, 5)) c = Input((3,)) cell = RNNCellWithConstants(32) custom_objects = {'RNNCellWithConstants': RNNCellWithConstants} with CustomObjectScope(custom_objects): layer = wrappers.Bidirectional(RNN(cell)) y = layer(x, constants=c) model = Model([x, c], y) model.compile(optimizer='rmsprop', loss='mse') model.train_on_batch( [np.zeros((6, 5, 5)), np.zeros((6, 3))], np.zeros((6, 64)) ) # Test basic case serialization. x_np = np.random.random((6, 5, 5)) c_np = np.random.random((6, 3)) y_np = model.predict([x_np, c_np]) weights = model.get_weights() config = layer.get_config() with CustomObjectScope(custom_objects): layer = wrappers.Bidirectional.from_config(copy.deepcopy(config)) y = layer(x, constants=c) model = Model([x, c], y) model.set_weights(weights) y_np_2 = model.predict([x_np, c_np]) assert_allclose(y_np, y_np_2, atol=1e-4) # test flat list inputs with CustomObjectScope(custom_objects): layer = wrappers.Bidirectional.from_config(copy.deepcopy(config)) y = layer([x, c]) model = Model([x, c], y) model.set_weights(weights) y_np_3 = model.predict([x_np, c_np]) assert_allclose(y_np, y_np_3, atol=1e-4) @pytest.mark.skipif(K.backend() == 'mxnet', reason='MXNet backend does not support custom RNN cell yet') def test_Bidirectional_with_constants_layer_passing_initial_state(): class RNNCellWithConstants(Layer): def __init__(self, units, **kwargs): self.units = units self.state_size = units super(RNNCellWithConstants, self).__init__(**kwargs) def build(self, input_shape): if not isinstance(input_shape, list): raise TypeError('expects constants shape') [input_shape, constant_shape] = input_shape # will (and should) raise if more than one constant passed self.input_kernel = self.add_weight( shape=(input_shape[-1], self.units), initializer='uniform', name='kernel') self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), initializer='uniform', name='recurrent_kernel') self.constant_kernel = self.add_weight( shape=(constant_shape[-1], self.units), initializer='uniform', name='constant_kernel') self.built = True def call(self, inputs, states, constants): [prev_output] = states [constant] = constants h_input = K.dot(inputs, self.input_kernel) h_state = K.dot(prev_output, self.recurrent_kernel) h_const = K.dot(constant, self.constant_kernel) output = h_input + h_state + h_const return output, [output] def get_config(self): config = {'units': self.units} base_config = super(RNNCellWithConstants, self).get_config() return dict(list(base_config.items()) + list(config.items())) # Test basic case. x = Input((5, 5)) c = Input((3,)) s_for = Input((32,)) s_bac = Input((32,)) cell = RNNCellWithConstants(32) custom_objects = {'RNNCellWithConstants': RNNCellWithConstants} with CustomObjectScope(custom_objects): layer = wrappers.Bidirectional(RNN(cell)) y = layer(x, initial_state=[s_for, s_bac], constants=c) model = Model([x, s_for, s_bac, c], y) model.compile(optimizer='rmsprop', loss='mse') model.train_on_batch( [np.zeros((6, 5, 5)), np.zeros((6, 32)), np.zeros((6, 32)), np.zeros((6, 3))], np.zeros((6, 64)) ) # Test basic case serialization. x_np = np.random.random((6, 5, 5)) s_fw_np = np.random.random((6, 32)) s_bk_np = np.random.random((6, 32)) c_np = np.random.random((6, 3)) y_np = model.predict([x_np, s_fw_np, s_bk_np, c_np]) weights = model.get_weights() config = layer.get_config() with CustomObjectScope(custom_objects): layer = wrappers.Bidirectional.from_config(copy.deepcopy(config)) y = layer(x, initial_state=[s_for, s_bac], constants=c) model = Model([x, s_for, s_bac, c], y) model.set_weights(weights) y_np_2 = model.predict([x_np, s_fw_np, s_bk_np, c_np]) assert_allclose(y_np, y_np_2, atol=1e-4) # verify that state is used y_np_2_different_s = model.predict([x_np, s_fw_np + 10., s_bk_np + 10., c_np]) with pytest.raises(AssertionError): assert_allclose(y_np, y_np_2_different_s, atol=1e-4) # test flat list inputs with CustomObjectScope(custom_objects): layer = wrappers.Bidirectional.from_config(copy.deepcopy(config)) y = layer([x, s_for, s_bac, c]) model = Model([x, s_for, s_bac, c], y) model.set_weights(weights) y_np_3 = model.predict([x_np, s_fw_np, s_bk_np, c_np]) assert_allclose(y_np, y_np_3, atol=1e-4) def test_Bidirectional_trainable(): # test layers that need learning_phase to be set x = Input(shape=(3, 2)) layer = wrappers.Bidirectional(layers.SimpleRNN(3)) _ = layer(x) assert len(layer.trainable_weights) == 6 layer.trainable = False assert len(layer.trainable_weights) == 0 layer.trainable = True assert len(layer.trainable_weights) == 6 def test_Bidirectional_updates(): x = Input(shape=(3, 2)) layer = wrappers.Bidirectional(layers.SimpleRNN(3)) assert len(layer.updates) == 0 assert len(layer.get_updates_for(None)) == 0 assert len(layer.get_updates_for(x)) == 0 layer.forward_layer.add_update(0, inputs=x) layer.forward_layer.add_update(1, inputs=None) layer.backward_layer.add_update(0, inputs=x) layer.backward_layer.add_update(1, inputs=None) assert len(layer.updates) == 4 assert len(layer.get_updates_for(None)) == 2 assert len(layer.get_updates_for(x)) == 2 def test_Bidirectional_losses(): x = Input(shape=(3, 2)) layer = wrappers.Bidirectional( layers.SimpleRNN(3, kernel_regularizer='l1', bias_regularizer='l1')) _ = layer(x) assert len(layer.losses) == 4 assert len(layer.get_losses_for(None)) == 4 assert len(layer.get_losses_for(x)) == 0 layer.forward_layer.add_loss(0, inputs=x) layer.forward_layer.add_loss(1, inputs=None) layer.backward_layer.add_loss(0, inputs=x) layer.backward_layer.add_loss(1, inputs=None) assert len(layer.losses) == 8 assert len(layer.get_losses_for(None)) == 6 assert len(layer.get_losses_for(x)) == 2 if __name__ == '__main__': pytest.main([__file__])
src/tornado-3.2.2/tornado/platform/common.py
code-annotator/tornado-annotated
645
60
<gh_stars>100-1000 """Lowest-common-denominator implementations of platform functionality.""" from __future__ import absolute_import, division, print_function, with_statement import errno import socket from tornado.platform import interface class Waker(interface.Waker): """Create an OS independent asynchronous pipe. For use on platforms that don't have os.pipe() (or where pipes cannot be passed to select()), but do have sockets. This includes Windows and Jython. """ def __init__(self): # Based on Zope async.py: http://svn.zope.org/zc.ngi/trunk/src/zc/ngi/async.py self.writer = socket.socket() # Disable buffering -- pulling the trigger sends 1 byte, # and we want that sent immediately, to wake up ASAP. self.writer.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) count = 0 while 1: count += 1 # Bind to a local port; for efficiency, let the OS pick # a free port for us. # Unfortunately, stress tests showed that we may not # be able to connect to that port ("Address already in # use") despite that the OS picked it. This appears # to be a race bug in the Windows socket implementation. # So we loop until a connect() succeeds (almost always # on the first try). See the long thread at # http://mail.zope.org/pipermail/zope/2005-July/160433.html # for hideous details. a = socket.socket() a.bind(("127.0.0.1", 0)) a.listen(1) connect_address = a.getsockname() # assigned (host, port) pair try: self.writer.connect(connect_address) break # success except socket.error as detail: if (not hasattr(errno, 'WSAEADDRINUSE') or detail[0] != errno.WSAEADDRINUSE): # "Address already in use" is the only error # I've seen on two WinXP Pro SP2 boxes, under # Pythons 2.3.5 and 2.4.1. raise # (10048, 'Address already in use') # assert count <= 2 # never triggered in Tim's tests if count >= 10: # I've never seen it go above 2 a.close() self.writer.close() raise socket.error("Cannot bind trigger!") # Close `a` and try again. Note: I originally put a short # sleep() here, but it didn't appear to help or hurt. a.close() self.reader, addr = a.accept() self.reader.setblocking(0) self.writer.setblocking(0) a.close() self.reader_fd = self.reader.fileno() def fileno(self): return self.reader.fileno() def write_fileno(self): return self.writer.fileno() def wake(self): try: self.writer.send(b"x") except (IOError, socket.error): pass def consume(self): try: while True: result = self.reader.recv(1024) if not result: break except (IOError, socket.error): pass def close(self): self.reader.close() self.writer.close()
docs/source/auto_examples/plot_usage.py
ruhugu/brokenaxes
362
81
""" Basic usage =========== This example presents the basic usage of brokenaxes """ import matplotlib.pyplot as plt from brokenaxes import brokenaxes import numpy as np fig = plt.figure(figsize=(5,2)) bax = brokenaxes(xlims=((0, .1), (.4, .7)), ylims=((-1, .7), (.79, 1)), hspace=.05) x = np.linspace(0, 1, 100) bax.plot(x, np.sin(10 * x), label='sin') bax.plot(x, np.cos(10 * x), label='cos') bax.legend(loc=3) bax.set_xlabel('time') bax.set_ylabel('value')
clpy/sparse/util.py
fixstars/clpy
142
116
<filename>clpy/sparse/util.py import clpy import clpy.sparse.base _preamble_atomic_add = ''' #if __CUDA_ARCH__ < 600 __device__ double atomicAdd(double* address, double val) { unsigned long long* address_as_ull = (unsigned long long*)address; unsigned long long old = *address_as_ull, assumed; do { assumed = old; old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val + __longlong_as_double(assumed))); } while (assumed != old); return __longlong_as_double(old); } #endif ''' def isintlike(x): try: return bool(int(x) == x) except (TypeError, ValueError): return False def isscalarlike(x): return clpy.isscalar(x) or (clpy.sparse.base.isdense(x) and x.ndim == 0) def isshape(x): if not isinstance(x, tuple) or len(x) != 2: return False m, n = x return isintlike(m) and isintlike(n)
test/test_cartesian.py
hwazni/discopy
205
117
from pytest import raises from discopy.cartesian import * def test_Box_repr(): f = Box('f', 1, 2, lambda x: (x, x)) assert "Box('f', 1, 2" in repr(f) def test_Function_str(): f = Function(2, 1, lambda x, y: x + y) assert 'Function(dom=2, cod=1,' in str(f) def test_Function_call(): f = Swap(2, 1) values = (2, 3) with raises(TypeError) as err: f(*values) assert str(err.value) == messages.expected_input_length(f, values) def test_Function_then(): f, g = Function(2, 1, lambda x, y: x + y), Function(1, 1, lambda x: x + 1) assert Function.id(2).then(*(f, g))(20, 21) == 42 def test_Function_then_err(): f = Function(2, 1, lambda x, y: x + y) g = (lambda x: x, ) with raises(TypeError) as err: f >> g assert str(err.value) == messages.type_err(Function, g) g = Function.id(2) with raises(AxiomError) as err: f >> g assert str(err.value) == messages.does_not_compose(f, g) def test_Function_tensor(): assert Function.id(3)(1, 2, 3)\ == Function.id(0).tensor(*(3 * [Function.id(1)]))(1, 2, 3) def test_Function_tensor_err(): f = Function(2, 1, lambda x, y: x + y) g = (lambda x: x, ) with raises(TypeError) as err: f @ g assert str(err.value) == messages.type_err(Function, g)
bsp/nrf5x/tools/sdk_dist.py
BreederBai/rt-thread
7,482
136
import os import sys import shutil cwd_path = os.getcwd() sys.path.append(os.path.join(os.path.dirname(cwd_path), 'rt-thread', 'tools')) # BSP dist function def dist_do_building(BSP_ROOT, dist_dir): from mkdist import bsp_copy_files import rtconfig library_dir = os.path.join(dist_dir, 'libraries') print("=> copy nrf52 bsp libraries") library_path = os.path.join(os.path.dirname(BSP_ROOT), 'libraries') bsp_copy_files(library_path, library_dir)
splash/render_options.py
tashidexiaoL/splashnew
3,612
178
<reponame>tashidexiaoL/splashnew # -*- coding: utf-8 -*- import os import json from splash import defaults from splash.utils import to_bytes, path_join_secure from splash.errors import BadOption class RenderOptions(object): """ Options that control how to render a response. """ _REQUIRED = object() def __init__(self, data, max_timeout): self.data = data self.max_timeout = max_timeout @classmethod def raise_error(cls, argument, description, type='bad_argument', **kwargs): params = { 'type': type, 'argument': argument, 'description': description } params.update(kwargs) raise BadOption(params) @classmethod def fromrequest(cls, request, max_timeout): """ Initialize options from a Twisted Request. """ # 1. GET / POST data data = {key.decode('utf-8'): values[0].decode('utf-8') for key, values in request.args.items()} if request.method == b'POST': content_type = request.getHeader(b'content-type') if content_type: request.content.seek(0) # 2. application/json POST data if b'application/json' in content_type: try: content = request.content.read().decode('utf-8') data.update(json.loads(content)) except ValueError as e: raise BadOption({ 'type': 'invalid_json', 'description': "Can't decode JSON", 'message': str(e), }) # 3. js_source from application/javascript POST requests if b'application/javascript' in content_type: data['js_source'] = request.content.read().decode('utf-8') request.content.seek(0) data['uid'] = id(request) return cls(data, max_timeout) def get_expired_args(self, cache): """ Return a list of argument names from load_args which can't be loaded """ return cache.get_missing(self.get_load_args().items()) def save_args_to_cache(self, cache): """ Process save_args and put all values to cache. Return a list of (name, key) pairs. """ save_args = self.get_save_args() save_values = [self.data.get(name) for name in save_args] keys = cache.add_many(save_values) return list(zip(save_args, keys)) def load_cached_args(self, cache): load_args = self.get_load_args() for name, key in (load_args or {}).items(): self.data[name] = cache[key] def get(self, name, default=_REQUIRED, type=str, range=None): value = self.data.get(name) if value is not None: if type is not None: try: value = type(value) except ValueError: msg = "Argument %r has a wrong type" % (name,) self.raise_error(name, msg, required_type=type.__name__) if range is not None and not (range[0] <= value <= range[1]): self.raise_error(name, 'Argument is out of the allowed range', min=range[0], max=range[1], value=value) return value elif default is self._REQUIRED: self.raise_error(name, 'Required argument is missing: %s' % name, type='argument_required') else: return default def _get_bool(self, name, default=_REQUIRED): return self.get(name, default, type=int, range=(0, 1)) def _get_url(self, name, default=_REQUIRED): url = self.get(name, default, type=None) if isinstance(url, bytes): url = url.decode('utf8') return url def get_uid(self): return self.get('uid') def get_url(self): return self._get_url("url") def get_baseurl(self): return self._get_url("baseurl", default=None) def get_wait(self): return self.get("wait", defaults.WAIT_TIME, type=float, range=(0, self.get_timeout())) def get_timeout(self): default = min(self.max_timeout, defaults.TIMEOUT) return self.get("timeout", default, type=float, range=(0, self.max_timeout)) def get_resource_timeout(self): return self.get("resource_timeout", defaults.RESOURCE_TIMEOUT, type=float, range=(0, 1e6)) def get_response_body(self): return self._get_bool("response_body", defaults.RESPONSE_BODY_ENABLED) def get_request_body(self): return self._get_bool("request_body", defaults.REQUEST_BODY_ENABLED) def get_images(self): return self._get_bool("images", defaults.AUTOLOAD_IMAGES) def get_proxy(self): return self.get("proxy", default=None) def get_js_source(self): return self.get("js_source", default=None) def get_width(self): return self.get("width", None, type=int, range=(1, defaults.MAX_WIDTH)) def get_height(self): return self.get("height", None, type=int, range=(1, defaults.MAX_HEIGTH)) def get_scale_method(self): scale_method = self.get("scale_method", defaults.IMAGE_SCALE_METHOD) allowed_scale_methods = ['raster', 'vector'] if scale_method not in allowed_scale_methods: self.raise_error( argument='scale_method', description="Invalid 'scale_method': %s" % scale_method, allowed=allowed_scale_methods, received=scale_method, ) return scale_method def get_quality(self): return self.get("quality", defaults.JPEG_QUALITY, type=int, range=(0, 100)) def get_http_method(self): method = self.get("http_method", "GET") if method.upper() not in ["POST", "GET"]: self.raise_error("http_method", "Unsupported HTTP method {}".format(method)) return method def get_body(self): body = self.get("body", None, to_bytes) method = self.get("http_method", "GET").upper() if method == 'GET' and body: self.raise_error("body", "GET request should not have a body") return body def get_render_all(self, wait=None): result = self._get_bool("render_all", False) if result == 1 and wait == 0: self.raise_error("render_all", "Pass non-zero 'wait' to render full webpage") return result def get_lua_source(self): return self.get("lua_source") def get_js_profile(self, js_profiles_path): js_profile = self.get("js", default=None) if not js_profile: return js_profile if js_profiles_path is None: self.raise_error('js', 'Javascript profiles are not enabled on server') try: profile_dir = path_join_secure(js_profiles_path, js_profile) except ValueError as e: # security check fails print(e) self.raise_error('js', 'Javascript profile does not exist') if not os.path.isdir(profile_dir): self.raise_error('js', 'Javascript profile does not exist') return profile_dir def get_headers(self): headers = self.get("headers", default=None, type=None) if headers is None: return headers if not isinstance(headers, (list, tuple, dict)): self.raise_error( argument='headers', description="'headers' must be either a JSON array of " "(name, value) pairs or a JSON object" ) if isinstance(headers, (list, tuple)): for el in headers: string_only = all(isinstance(e, str) for e in el) if not (isinstance(el, (list, tuple)) and len(el) == 2 and string_only): self.raise_error( argument='headers', description="'headers' must be either a JSON array of " "(name, value) pairs or a JSON object" ) return headers def get_save_args(self): save_args = self.get("save_args", default=None, type=None) if save_args is None: return [] if isinstance(save_args, str): # comma-separated string save_args = save_args.split(',') if not isinstance(save_args, list): self.raise_error( argument="save_args", description="'save_args' should be either a comma-separated " "string or a JSON array with argument names", ) # JSON array if not all(isinstance(a, str) for a in save_args): self.raise_error( argument="save_args", description="'save_args' should be a list of strings", ) return save_args def get_load_args(self): load_args = self.get("load_args", default=None, type=None) if load_args is None: return {} if isinstance(load_args, str): try: load_args = dict( kv.split("=", 1) for kv in load_args.split(';') ) except ValueError: self.raise_error( argument="load_args", description="'load_args' string value is not a " "semicolon-separated list of name=hash pairs" ) if not isinstance(load_args, dict): self.raise_error( argument="load_args", description="'load_args' should be either a JSON object with " "argument hashes or a semicolon-separated list " "of name=hash pairs" ) return load_args def get_viewport(self, wait=None): viewport = self.get("viewport", defaults.VIEWPORT_SIZE) if viewport == 'full': if wait == 0: self.raise_error("viewport", "Pass non-zero 'wait' to render full webpage") else: try: validate_size_str(viewport) except ValueError as e: self.raise_error("viewport", str(e)) return viewport def get_filters(self, pool=None, adblock_rules=None): filter_names = self.get('filters', '') filter_names = [f for f in filter_names.split(',') if f] if pool is None and adblock_rules is None: # skip validation return filter_names if not filter_names: return filter_names if pool is not None: adblock_rules = pool.network_manager_factory.adblock_rules if adblock_rules is None: self.raise_error( "filters", "Invalid filter names: %s" % (filter_names,) ) if adblock_rules is not None: unknown_filters = adblock_rules.get_unknown_filters(filter_names) if unknown_filters: self.raise_error( "filters", "Invalid filter names: %s" % (unknown_filters,) ) return filter_names def get_allowed_domains(self): allowed_domains = self.get("allowed_domains", default=None) if allowed_domains is not None: return allowed_domains.split(',') def get_allowed_content_types(self): content_types = self.get("allowed_content_types", default=['*']) if isinstance(content_types, str): content_types = list(filter(None, content_types.split(','))) return content_types def get_forbidden_content_types(self): content_types = self.get("forbidden_content_types", default=[]) if isinstance(content_types, str): content_types = list(filter(None, content_types.split(','))) return content_types def get_html5_media(self): return self._get_bool("html5_media", defaults.HTML5_MEDIA_ENABLED) def get_engine(self, browser_engines_enabled=None): engine = self.get("engine", default="webkit", type=str) if engine not in {"webkit", "chromium"}: self.raise_error("engine", "Unknown render engine {}".format(engine)) if browser_engines_enabled is not None: if engine not in browser_engines_enabled: self.raise_error("engine", "Disabled render engine {}".format(engine)) return engine def get_http2(self): engine = self.get_engine() if self.get_engine() == "webkit": default = defaults.WEBKIT_HTTP2_ENABLED else: assert engine == 'chromium' default = defaults.CHROMIUM_HTTP2_ENABLED return self._get_bool("http2", default) def get_common_params(self, js_profiles_path): wait = self.get_wait() return { 'url': self.get_url(), 'baseurl': self.get_baseurl(), 'wait': wait, 'resource_timeout': self.get_resource_timeout(), 'viewport': self.get_viewport(wait), 'render_all': self.get_render_all(wait), 'images': self.get_images(), 'headers': self.get_headers(), 'proxy': self.get_proxy(), 'js_profile': self.get_js_profile(js_profiles_path), 'js_source': self.get_js_source(), 'http_method': self.get_http_method(), 'body': self.get_body(), 'html5_media': self.get_html5_media(), 'http2': self.get_http2(), # 'lua': self.get_lua(), } def get_image_params(self): return { 'width': self.get_width(), 'height': self.get_height(), 'scale_method': self.get_scale_method() } def get_png_params(self): return self.get_image_params() def get_jpeg_params(self): params = {'quality': self.get_quality()} params.update(self.get_image_params()) return params def get_include_params(self): return dict( html=self._get_bool("html", defaults.DO_HTML), iframes=self._get_bool("iframes", defaults.DO_IFRAMES), png=self._get_bool("png", defaults.DO_PNG), jpeg=self._get_bool("jpeg", defaults.DO_JPEG), script=self._get_bool("script", defaults.SHOW_SCRIPT), console=self._get_bool("console", defaults.SHOW_CONSOLE), history=self._get_bool("history", defaults.SHOW_HISTORY), har=self._get_bool("har", defaults.SHOW_HAR), ) def validate_size_str(size_str): """ Validate size string in WxH format. Can be used to validate both viewport and window size strings. Does not special-case ``'full'`` viewport. Raises ``ValueError`` if anything goes wrong. :param size_str: string to validate """ max_width = defaults.VIEWPORT_MAX_WIDTH max_heigth = defaults.VIEWPORT_MAX_HEIGTH max_area = defaults.VIEWPORT_MAX_AREA try: w, h = map(int, size_str.split('x')) except ValueError: raise ValueError("Invalid viewport format: %s" % size_str) else: if not ((0 < w <= max_width) and (0 < h <= max_heigth) and (w * h < max_area)): raise ValueError("Viewport (%dx%d, area=%d) is out of range (%dx%d, area=%d)" % (w, h, w * h, max_width, max_heigth, max_area))
glue/__init__.py
HPLegion/glue
550
186
<reponame>HPLegion/glue<filename>glue/__init__.py # Set up configuration variables __all__ = ['custom_viewer', 'qglue', 'test'] import os import sys from pkg_resources import get_distribution, DistributionNotFound try: __version__ = get_distribution('glue-core').version except DistributionNotFound: __version__ = 'undefined' from ._mpl_backend import MatplotlibBackendSetter sys.meta_path.append(MatplotlibBackendSetter()) from glue.viewers.custom.helper import custom_viewer # Load user's configuration file from .config import load_configuration env = load_configuration() from .qglue import qglue from .main import load_plugins # noqa def test(no_optional_skip=False): from pytest import main root = os.path.abspath(os.path.dirname(__file__)) args = [root, '-x'] if no_optional_skip: args.append('--no-optional-skip') return main(args=args) from glue._settings_helpers import load_settings load_settings() # In PyQt 5.5+, PyQt overrides the default exception catching and fatally # crashes the Qt application without printing out any details about the error. # Below we revert the exception hook to the original Python one. Note that we # can't just do sys.excepthook = sys.__excepthook__ otherwise PyQt will detect # the default excepthook is in place and override it. def handle_exception(exc_type, exc_value, exc_traceback): sys.__excepthook__(exc_type, exc_value, exc_traceback) sys.excepthook = handle_exception
djangox/lib/python3.8/site-packages/allauth/socialaccount/providers/dropbox/views.py
DemarcusL/django_wiki_lab
6,342
201
import requests from allauth.socialaccount.providers.oauth2.views import ( OAuth2Adapter, OAuth2CallbackView, OAuth2LoginView, ) from .provider import DropboxOAuth2Provider class DropboxOAuth2Adapter(OAuth2Adapter): provider_id = DropboxOAuth2Provider.id access_token_url = "https://api.dropbox.com/oauth2/token" authorize_url = "https://www.dropbox.com/oauth2/authorize" profile_url = "https://api.dropbox.com/2/users/get_current_account" redirect_uri_protocol = "https" def complete_login(self, request, app, token, **kwargs): response = requests.post( self.profile_url, headers={"Authorization": "Bearer %s" % (token.token,)}, ) response.raise_for_status() return self.get_provider().sociallogin_from_response(request, response.json()) oauth_login = OAuth2LoginView.adapter_view(DropboxOAuth2Adapter) oauth_callback = OAuth2CallbackView.adapter_view(DropboxOAuth2Adapter)
src/ros_comm/rosmsg/setup.py
jungleni/ros_code_reading
742
212
<reponame>jungleni/ros_code_reading #!/usr/bin/env python from distutils.core import setup from catkin_pkg.python_setup import generate_distutils_setup d = generate_distutils_setup( packages=['rosmsg'], package_dir={'': 'src'}, scripts=['scripts/rosmsg', 'scripts/rosmsg-proto', 'scripts/rossrv'], requires=['genmsg', 'rosbag', 'roslib', 'rospkg'] ) setup(**d)
pixloc/visualization/viz_3d.py
jmorlana/pixloc
457
227
<filename>pixloc/visualization/viz_3d.py """ 3D visualization primitives based on Plotly. We might want to instead use a more powerful library like Open3D. Plotly however supports animations, buttons and sliders. 1) Initialize a figure with `fig = init_figure()` 2) Plot points, cameras, lines, or create a slider animation. 3) Call `fig.show()` to render the figure. """ import plotly.graph_objects as go import numpy as np from ..pixlib.geometry.utils import to_homogeneous def init_figure(height=800): """Initialize a 3D figure.""" fig = go.Figure() fig.update_layout( height=height, scene_camera=dict( eye=dict(x=0., y=-.1, z=-2), up=dict(x=0, y=-1., z=0)), scene=dict( xaxis=dict(showbackground=False), yaxis=dict(showbackground=False), aspectmode='data', dragmode='orbit'), margin=dict(l=0, r=0, b=0, t=0, pad=0)) # noqa E741 return fig def plot_points(fig, pts, color='rgba(255, 0, 0, 1)', ps=2): """Plot a set of 3D points.""" x, y, z = pts.T tr = go.Scatter3d( x=x, y=y, z=z, mode='markers', marker_size=ps, marker_color=color, marker_line_width=.2) fig.add_trace(tr) def plot_camera(fig, R, t, K, color='rgb(0, 0, 255)'): """Plot a camera as a cone with camera frustum.""" x, y, z = t u, v, w = R @ -np.array([0, 0, 1]) tr = go.Cone( x=[x], y=[y], z=[z], u=[u], v=[v], w=[w], anchor='tip', showscale=False, colorscale=[[0, color], [1, color]], sizemode='absolute') fig.add_trace(tr) W, H = K[0, 2]*2, K[1, 2]*2 corners = np.array([[0, 0], [W, 0], [W, H], [0, H], [0, 0]]) corners = to_homogeneous(corners) @ np.linalg.inv(K).T corners = (corners/2) @ R.T + t x, y, z = corners.T tr = go.Scatter3d( x=x, y=y, z=z, line=dict(color='rgba(0, 0, 0, .5)'), marker=dict(size=0.0001), showlegend=False) fig.add_trace(tr) def create_slider_animation(fig, traces): """Create a slider that animates a list of traces (e.g. 3D points).""" slider = {'steps': []} frames = [] fig.add_trace(traces[0]) idx = len(fig.data) - 1 for i, tr in enumerate(traces): frames.append(go.Frame(name=str(i), traces=[idx], data=[tr])) step = {"args": [ [str(i)], {"frame": {"redraw": True}, "mode": "immediate"}], "label": i, "method": "animate"} slider['steps'].append(step) fig.frames = tuple(frames) fig.layout.sliders = (slider,)
tests/test_subpixel_upsample.py
Project-MONAI/MONAI
2,971
244
# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch import torch.nn as nn from parameterized import parameterized from monai.networks import eval_mode from monai.networks.blocks import SubpixelUpsample from monai.networks.layers.factories import Conv TEST_CASE_SUBPIXEL = [] for inch in range(1, 5): for dim in range(1, 4): for factor in range(1, 3): test_case = [ {"dimensions": dim, "in_channels": inch, "scale_factor": factor}, (2, inch, *([8] * dim)), (2, inch, *([8 * factor] * dim)), ] TEST_CASE_SUBPIXEL.append(test_case) TEST_CASE_SUBPIXEL_2D_EXTRA = [ {"dimensions": 2, "in_channels": 2, "scale_factor": 3}, (2, 2, 8, 4), # different size for H and W (2, 2, 24, 12), ] TEST_CASE_SUBPIXEL_3D_EXTRA = [ {"dimensions": 3, "in_channels": 1, "scale_factor": 2}, (2, 1, 16, 8, 4), # different size for H, W and D (2, 1, 32, 16, 8), ] conv_block = nn.Sequential( Conv[Conv.CONV, 3](1, 4, kernel_size=1), Conv[Conv.CONV, 3](4, 8, kernel_size=3, stride=1, padding=1) ) TEST_CASE_SUBPIXEL_CONV_BLOCK_EXTRA = [ {"dimensions": 3, "in_channels": 1, "scale_factor": 2, "conv_block": conv_block}, (2, 1, 16, 8, 4), # different size for H, W and D (2, 1, 32, 16, 8), ] TEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_2D_EXTRA) TEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_3D_EXTRA) TEST_CASE_SUBPIXEL.append(TEST_CASE_SUBPIXEL_CONV_BLOCK_EXTRA) # add every test back with the pad/pool sequential component omitted for tests in list(TEST_CASE_SUBPIXEL): args: dict = tests[0] # type: ignore args = dict(args) args["apply_pad_pool"] = False TEST_CASE_SUBPIXEL.append([args, tests[1], tests[2]]) class TestSUBPIXEL(unittest.TestCase): @parameterized.expand(TEST_CASE_SUBPIXEL) def test_subpixel_shape(self, input_param, input_shape, expected_shape): net = SubpixelUpsample(**input_param) with eval_mode(net): result = net.forward(torch.randn(input_shape)) self.assertEqual(result.shape, expected_shape) if __name__ == "__main__": unittest.main()
nemo/collections/asr/parts/numba/rnnt_loss/rnnt_numpy.py
madhukarkm/NeMo
4,145
257
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Copyright 2018-2019, <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from torch.autograd import Function, Variable from torch.nn import Module def check_type(var, t, name): if var.dtype is not t: raise TypeError("{} must be {}".format(name, t)) def check_contiguous(var, name): if not var.is_contiguous(): raise ValueError("{} must be contiguous".format(name)) def check_dim(var, dim, name): if len(var.shape) != dim: raise ValueError("{} must be {}D".format(name, dim)) def certify_inputs(log_probs, labels, lengths, label_lengths): # check_type(log_probs, torch.float32, "log_probs") check_type(labels, torch.int32, "labels") check_type(label_lengths, torch.int32, "label_lengths") check_type(lengths, torch.int32, "lengths") check_contiguous(log_probs, "log_probs") check_contiguous(labels, "labels") check_contiguous(label_lengths, "label_lengths") check_contiguous(lengths, "lengths") if lengths.shape[0] != log_probs.shape[0]: raise ValueError( f"Must have a length per example. " f"Given lengths dim: {lengths.shape[0]}, " f"Log probs dim : {log_probs.shape[0]}" ) if label_lengths.shape[0] != log_probs.shape[0]: raise ValueError( "Must have a label length per example. " f"Given label lengths dim : {label_lengths.shape[0]}, " f"Log probs dim : {log_probs.shape[0]}" ) check_dim(log_probs, 4, "log_probs") check_dim(labels, 2, "labels") check_dim(lengths, 1, "lenghts") check_dim(label_lengths, 1, "label_lenghts") max_T = torch.max(lengths) max_U = torch.max(label_lengths) T, U = log_probs.shape[1:3] if T != max_T: raise ValueError(f"Input length mismatch! Given T: {T}, Expected max T from input lengths: {max_T}") if U != max_U + 1: raise ValueError(f"Output length mismatch! Given U: {U}, Expected max U from target lengths: {max_U} + 1") def _assert_no_grad(tensor): assert not tensor.requires_grad, ( "gradients only computed for log_probs - please " "mark other tensors as not requiring gradients" ) def forward_pass(log_probs, labels, blank): """ Computes probability of the forward variable alpha. Args: log_probs: Tensor of shape [T, U, V+1] labels: Labels of shape [B, U] blank: Index of the blank token. Returns: A tuple of the forward variable probabilities - alpha of shape [T, U] and the log likelihood of this forward step. """ T, U, _ = log_probs.shape alphas = np.zeros((T, U), dtype='f') for t in range(1, T): alphas[t, 0] = alphas[t - 1, 0] + log_probs[t - 1, 0, blank] for u in range(1, U): alphas[0, u] = alphas[0, u - 1] + log_probs[0, u - 1, labels[u - 1]] for t in range(1, T): for u in range(1, U): no_emit = alphas[t - 1, u] + log_probs[t - 1, u, blank] emit = alphas[t, u - 1] + log_probs[t, u - 1, labels[u - 1]] alphas[t, u] = np.logaddexp(emit, no_emit) loglike = alphas[T - 1, U - 1] + log_probs[T - 1, U - 1, blank] return alphas, loglike def backward_pass(log_probs, labels, blank): """ Computes probability of the backward variable beta. Args: log_probs: Tensor of shape [T, U, V+1] labels: Labels of shape [B, U] blank: Index of the blank token. Returns: A tuple of the backward variable probabilities - beta of shape [T, U] and the log likelihood of this backward step. """ T, U, _ = log_probs.shape betas = np.zeros((T, U), dtype='f') betas[T - 1, U - 1] = log_probs[T - 1, U - 1, blank] for t in reversed(range(T - 1)): betas[t, U - 1] = betas[t + 1, U - 1] + log_probs[t, U - 1, blank] for u in reversed(range(U - 1)): betas[T - 1, u] = betas[T - 1, u + 1] + log_probs[T - 1, u, labels[u]] for t in reversed(range(T - 1)): for u in reversed(range(U - 1)): no_emit = betas[t + 1, u] + log_probs[t, u, blank] emit = betas[t, u + 1] + log_probs[t, u, labels[u]] betas[t, u] = np.logaddexp(emit, no_emit) return betas, betas[0, 0] def compute_gradient(log_probs, alphas, betas, labels, blank, fastemit_lambda): """ Computes the gradients of the log_probs with respect to the log probability of this step occuring. Args: Args: log_probs: Tensor of shape [T, U, V+1] alphas: Tensor of shape [T, U] which represents the forward variable. betas: Tensor of shape [T, U] which represents the backward variable. labels: Labels of shape [B, U] blank: Index of the blank token. Returns: Gradients of shape [T, U, V+1] with respect to the forward log probability """ T, U, _ = log_probs.shape grads = np.full(log_probs.shape, -float("inf")) log_like = betas[0, 0] # == alphas[T - 1, U - 1] + betas[T - 1, U - 1] # // grad to last blank transition grads[T - 1, U - 1, blank] = alphas[T - 1, U - 1] grads[: T - 1, :, blank] = alphas[: T - 1, :] + betas[1:, :] # // grad to label transition for u, l in enumerate(labels): grads[:, u, l] = alphas[:, u] + betas[:, u + 1] grads = -np.exp(grads + log_probs - log_like) if fastemit_lambda > 0.0: for u, l in enumerate(labels): grads[:, u, l] = (1.0 + fastemit_lambda) * grads[:, u, l] return grads def fastemit_regularization(log_probs, labels, alphas, betas, blank, fastemit_lambda): """ Describes the computation of FastEmit regularization from the paper - [FastEmit: Low-latency Streaming ASR with Sequence-level Emission Regularization](https://arxiv.org/abs/2010.11148) Args: log_probs: Tensor of shape [T, U, V+1] labels: Unused. Labels of shape [B, U] alphas: Tensor of shape [T, U] which represents the forward variable. betas: Unused. Tensor of shape [T, U] which represents the backward variable. blank: Index of the blank token. fastemit_lambda: Float scaling factor for FastEmit regularization. Returns: The regularized negative log likelihood - lambda * P˜(At, u|x) """ # General calculation of the fastemit regularization alignments T, U, _ = log_probs.shape # alignment = np.zeros((T, U), dtype='float32') # # for t in range(0, T): # alignment[t, U - 1] = alphas[t, U - 1] + betas[t, U - 1] # # for t in range(0, T): # for u in range(0, U - 1): # emit = alphas[t, u] + log_probs[t, u, labels[u]] + betas[t, u + 1] # alignment[t, u] = emit # reg = fastemit_lambda * (alignment[T - 1, U - 1]) # The above is equivalent to below, without need of computing above # reg = fastemit_lambda * (alphas[T - 1, U - 1] + betas[T - 1, U - 1]) # The above is also equivalent to below, without need of computing the betas alignment matrix reg = fastemit_lambda * (alphas[T - 1, U - 1] + log_probs[T - 1, U - 1, blank]) return -reg def transduce(log_probs, labels, blank=0, fastemit_lambda=0.0): """ Args: log_probs: 3D array with shape [input len, output len + 1, vocab size] labels: 1D array with shape [output time steps] blank: Index of the blank token. fastemit_lambda: Float scaling factor for FastEmit regularization. Returns: float: The negative log-likelihood 3D array: Gradients with respect to the unnormalized input actications 2d arrays: Alphas matrix (TxU) 2d array: Betas matrix (TxU) """ alphas, ll_forward = forward_pass(log_probs, labels, blank) betas, ll_backward = backward_pass(log_probs, labels, blank) grads = compute_gradient(log_probs, alphas, betas, labels, blank, fastemit_lambda) return -ll_forward, grads, alphas, betas def transduce_batch(log_probs, labels, flen, glen, blank=0, fastemit_lambda=0.0): """ Compute the transducer loss of the batch. Args: log_probs: [B, T, U, V+1]. Activation matrix normalized with log-softmax. labels: [B, U+1] - ground truth labels with <SOS> padded as blank token in the beginning. flen: Length vector of the acoustic sequence. glen: Length vector of the target sequence. blank: Id of the blank token. fastemit_lambda: Float scaling factor for FastEmit regularization. Returns: Batch of transducer forward log probabilities (loss) and the gradients of the activation matrix. """ grads = np.zeros_like(log_probs) costs = [] for b in range(log_probs.shape[0]): t = int(flen[b]) u = int(glen[b]) + 1 ll, g, alphas, betas = transduce(log_probs[b, :t, :u, :], labels[b, : u - 1], blank, fastemit_lambda) grads[b, :t, :u, :] = g reg = fastemit_regularization( log_probs[b, :t, :u, :], labels[b, : u - 1], alphas, betas, blank, fastemit_lambda ) ll += reg costs.append(ll) return costs, grads class _RNNT(Function): @staticmethod def forward(ctx, acts, labels, act_lens, label_lens, blank, fastemit_lambda): costs, grads = transduce_batch( acts.detach().cpu().numpy(), labels.cpu().numpy(), act_lens.cpu().numpy(), label_lens.cpu().numpy(), blank, fastemit_lambda, ) costs = torch.FloatTensor([sum(costs)]) grads = torch.Tensor(grads).to(acts) ctx.grads = grads return costs @staticmethod def backward(ctx, grad_output): return ctx.grads, None, None, None, None, None class RNNTLoss(Module): """ Parameters: `blank_label` (int): default 0 - label index of blank token fastemit_lambda: Float scaling factor for FastEmit regularization. """ def __init__(self, blank: int = 0, fastemit_lambda: float = 0.0): super(RNNTLoss, self).__init__() self.blank = blank self.fastemit_lambda = fastemit_lambda self.rnnt = _RNNT.apply def forward(self, acts, labels, act_lens, label_lens): assert len(labels.size()) == 2 _assert_no_grad(labels) _assert_no_grad(act_lens) _assert_no_grad(label_lens) certify_inputs(acts, labels, act_lens, label_lens) acts = torch.nn.functional.log_softmax(acts, -1) return self.rnnt(acts, labels, act_lens, label_lens, self.blank, self.fastemit_lambda) if __name__ == '__main__': loss = RNNTLoss(fastemit_lambda=0.01) torch.manual_seed(0) acts = torch.randn(1, 2, 5, 3) labels = torch.tensor([[0, 2, 1, 2]], dtype=torch.int32) act_lens = torch.tensor([2], dtype=torch.int32) label_lens = torch.tensor([len(labels[0])], dtype=torch.int32) loss_val = loss(acts, labels, act_lens, label_lens)
gfirefly/dbentrust/dbutils.py
handsome3163/H2Dgame-Firefly
675
270
<reponame>handsome3163/H2Dgame-Firefly<gh_stars>100-1000 #coding:utf8 ''' Created on 2013-8-21 @author: lan (www.9miao.com) ''' import itertools import datetime def safeunicode(obj, encoding='utf-8'): r""" Converts any given object to unicode string. >>> safeunicode('hello') u'hello' >>> safeunicode(2) u'2' >>> safeunicode('\xe1\x88\xb4') u'\u1234' """ t = type(obj) if t is unicode: return obj elif t is str: return obj.decode(encoding) elif t in [int, float, bool]: return unicode(obj) elif hasattr(obj, '__unicode__') or isinstance(obj, unicode): return unicode(obj) else: return str(obj).decode(encoding) def safestr(obj, encoding='utf-8'): r""" Converts any given object to utf-8 encoded string. >>> safestr('hello') 'hello' >>> safestr(u'\u1234') '\xe1\x88\xb4' >>> safestr(2) '2' """ if isinstance(obj, unicode): return obj.encode(encoding) elif isinstance(obj, str): return obj elif hasattr(obj, 'next'): # iterator return itertools.imap(safestr, obj) else: return str(obj) def sqlify(obj): """ converts `obj` to its proper SQL version >>> sqlify(None) 'NULL' >>> sqlify(True) "'t'" >>> sqlify(3) '3' """ # because `1 == True and hash(1) == hash(True)` # we have to do this the hard way... if obj is None: return 'NULL' elif obj is True: return "'t'" elif obj is False: return "'f'" elif datetime and isinstance(obj, datetime.datetime): return repr(obj.isoformat()) else: if isinstance(obj, unicode): obj = obj.encode('utf8') return repr(obj) def sqllist(lst): """ Converts the arguments for use in something like a WHERE clause. >>> sqllist(['a', 'b']) 'a, b' >>> sqllist('a') 'a' >>> sqllist(u'abc') u'abc' """ if isinstance(lst, basestring): return lst else: return ', '.join(lst) def _sqllist(values): """ >>> _sqllist([1, 2, 3]) <sql: '(1, 2, 3)'> """ items = [] items.append('(') for i, v in enumerate(values): if i != 0: items.append(', ') items.append(sqlparam(v)) items.append(')') return SQLQuery(items) def sqlquote(a): """ Ensures `a` is quoted properly for use in a SQL query. >>> 'WHERE x = ' + sqlquote(True) + ' AND y = ' + sqlquote(3) <sql: "WHERE x = 't' AND y = 3"> >>> 'WHERE x = ' + sqlquote(True) + ' AND y IN ' + sqlquote([2, 3]) <sql: "WHERE x = 't' AND y IN (2, 3)"> """ if isinstance(a, list): return _sqllist(a) else: return sqlparam(a).sqlquery() def _interpolate(sformat): """ Takes a format string and returns a list of 2-tuples of the form (boolean, string) where boolean says whether string should be evaled or not. from <http://lfw.org/python/Itpl.py> (public domain, Ka-Ping Yee) """ from tokenize import tokenprog tokenprog = tokenprog def matchorfail(text, pos): match = tokenprog.match(text, pos) if match is None: raise _ItplError(text, pos) return match, match.end() namechars = "abcdefghijklmnopqrstuvwxyz" \ "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_"; chunks = [] pos = 0 while 1: dollar = sformat.find("$", pos) if dollar < 0: break nextchar = sformat[dollar + 1] if nextchar == "{": chunks.append((0, sformat[pos:dollar])) pos, level = dollar + 2, 1 while level: match, pos = matchorfail(sformat, pos) tstart, tend = match.regs[3] token = sformat[tstart:tend] if token == "{": level = level + 1 elif token == "}": level = level - 1 chunks.append((1, sformat[dollar + 2:pos - 1])) elif nextchar in namechars: chunks.append((0, sformat[pos:dollar])) match, pos = matchorfail(sformat, dollar + 1) while pos < len(sformat): if sformat[pos] == "." and \ pos + 1 < len(sformat) and sformat[pos + 1] in namechars: match, pos = matchorfail(sformat, pos + 1) elif sformat[pos] in "([": pos, level = pos + 1, 1 while level: match, pos = matchorfail(sformat, pos) tstart, tend = match.regs[3] token = sformat[tstart:tend] if token[0] in "([": level = level + 1 elif token[0] in ")]": level = level - 1 else: break chunks.append((1, sformat[dollar + 1:pos])) else: chunks.append((0, sformat[pos:dollar + 1])) pos = dollar + 1 + (nextchar == "$") if pos < len(sformat): chunks.append((0, sformat[pos:])) return chunks def sqlwhere(dictionary, grouping=' AND '): """ Converts a `dictionary` to an SQL WHERE clause `SQLQuery`. >>> sqlwhere({'cust_id': 2, 'order_id':3}) <sql: 'order_id = 3 AND cust_id = 2'> >>> sqlwhere({'cust_id': 2, 'order_id':3}, grouping=', ') <sql: 'order_id = 3, cust_id = 2'> >>> sqlwhere({'a': 'a', 'b': 'b'}).query() 'a = %s AND b = %s' """ return SQLQuery.join([k + ' = ' + sqlparam(v) for k, v in dictionary.items()], grouping) def reparam(string_, dictionary): """ Takes a string and a dictionary and interpolates the string using values from the dictionary. Returns an `SQLQuery` for the result. >>> reparam("s = $s", dict(s=True)) <sql: "s = 't'"> >>> reparam("s IN $s", dict(s=[1, 2])) <sql: 's IN (1, 2)'> """ dictionary = dictionary.copy() # eval mucks with it result = [] for live, chunk in _interpolate(string_): if live: v = eval(chunk, dictionary) result.append(sqlquote(v)) else: result.append(chunk) return SQLQuery.join(result, '') class UnknownParamstyle(Exception): """ raised for unsupported db paramstyles (currently supported: qmark, numeric, format, pyformat) """ pass class _ItplError(ValueError): def __init__(self, text, pos): ValueError.__init__(self) self.text = text self.pos = pos def __str__(self): return "unfinished expression in %s at char %d" % ( repr(self.text), self.pos) class SQLParam(object): """ Parameter in SQLQuery. >>> q = SQLQuery(["SELECT * FROM test WHERE name=", SQLParam("joe")]) >>> q <sql: "SELECT * FROM test WHERE name='joe'"> >>> q.query() 'SELECT * FROM test WHERE name=%s' >>> q.values() ['joe'] """ __slots__ = ["value"] def __init__(self, value): self.value = value def get_marker(self, paramstyle='pyformat'): if paramstyle == 'qmark': return '?' elif paramstyle == 'numeric': return ':1' elif paramstyle is None or paramstyle in ['format', 'pyformat']: return '%s' raise UnknownParamstyle, paramstyle def sqlquery(self): return SQLQuery([self]) def __add__(self, other): return self.sqlquery() + other def __radd__(self, other): return other + self.sqlquery() def __str__(self): return str(self.value) def __repr__(self): return '<param: %s>' % repr(self.value) sqlparam = SQLParam class SQLQuery(object): """ You can pass this sort of thing as a clause in any db function. Otherwise, you can pass a dictionary to the keyword argument `vars` and the function will call reparam for you. Internally, consists of `items`, which is a list of strings and SQLParams, which get concatenated to produce the actual query. """ __slots__ = ["items"] # tested in sqlquote's docstring def __init__(self, items=None): r"""Creates a new SQLQuery. >>> SQLQuery("x") <sql: 'x'> >>> q = SQLQuery(['SELECT * FROM ', 'test', ' WHERE x=', SQLParam(1)]) >>> q <sql: 'SELECT * FROM test WHERE x=1'> >>> q.query(), q.values() ('SELECT * FROM test WHERE x=%s', [1]) >>> SQLQuery(SQLParam(1)) <sql: '1'> """ if items is None: self.items = [] elif isinstance(items, list): self.items = items elif isinstance(items, SQLParam): self.items = [items] elif isinstance(items, SQLQuery): self.items = list(items.items) else: self.items = [items] # Take care of SQLLiterals for i, item in enumerate(self.items): if isinstance(item, SQLParam) and isinstance(item.value, SQLLiteral): self.items[i] = item.value.v def append(self, value): self.items.append(value) def __add__(self, other): if isinstance(other, basestring): items = [other] elif isinstance(other, SQLQuery): items = other.items else: return NotImplemented return SQLQuery(self.items + items) def __radd__(self, other): if isinstance(other, basestring): items = [other] else: return NotImplemented return SQLQuery(items + self.items) def __iadd__(self, other): if isinstance(other, (basestring, SQLParam)): self.items.append(other) elif isinstance(other, SQLQuery): self.items.extend(other.items) else: return NotImplemented return self def __len__(self): return len(self.query()) def query(self, paramstyle=None): """ Returns the query part of the sql query. >>> q = SQLQuery(["SELECT * FROM test WHERE name=", SQLParam('joe')]) >>> q.query() 'SELECT * FROM test WHERE name=%s' >>> q.query(paramstyle='qmark') 'SELECT * FROM test WHERE name=?' """ s = [] for x in self.items: if isinstance(x, SQLParam): x = x.get_marker(paramstyle) s.append(safestr(x)) else: x = safestr(x) # automatically escape % characters in the query # For backward compatability, ignore escaping when the query looks already escaped if paramstyle in ['format', 'pyformat']: if '%' in x and '%%' not in x: x = x.replace('%', '%%') s.append(x) return "".join(s) def values(self): """ Returns the values of the parameters used in the sql query. >>> q = SQLQuery(["SELECT * FROM test WHERE name=", SQLParam('joe')]) >>> q.values() ['joe'] """ return [i.value for i in self.items if isinstance(i, SQLParam)] def join(items, sep=' ', prefix=None, suffix=None, target=None): """ Joins multiple queries. >>> SQLQuery.join(['a', 'b'], ', ') <sql: 'a, b'> Optinally, prefix and suffix arguments can be provided. >>> SQLQuery.join(['a', 'b'], ', ', prefix='(', suffix=')') <sql: '(a, b)'> If target argument is provided, the items are appended to target instead of creating a new SQLQuery. """ if target is None: target = SQLQuery() target_items = target.items if prefix: target_items.append(prefix) for i, item in enumerate(items): if i != 0: target_items.append(sep) if isinstance(item, SQLQuery): target_items.extend(item.items) else: target_items.append(item) if suffix: target_items.append(suffix) return target join = staticmethod(join) def _str(self): try: return self.query() % tuple([sqlify(x) for x in self.values()]) except (ValueError, TypeError): return self.query() def __str__(self): return safestr(self._str()) def __unicode__(self): return safeunicode(self._str()) def __repr__(self): return '<sql: %s>' % repr(str(self)) class SQLLiteral: """ Protects a string from `sqlquote`. >>> sqlquote('NOW()') <sql: "'NOW()'"> >>> sqlquote(SQLLiteral('NOW()')) <sql: 'NOW()'> """ def __init__(self, v): self.v = v def __repr__(self): return self.v class SQLProducer: """Database""" def __init__(self): """Creates a database. """ pass def query(self, sql_query,processed=False, svars=None): """ Execute SQL query `sql_query` using dictionary `vars` to interpolate it. If `processed=True`, `vars` is a `reparam`-style list to use instead of interpolating. >>> db = DB(None, {}) >>> db.query("SELECT * FROM foo", _test=True) <sql: 'SELECT * FROM foo'> >>> db.query("SELECT * FROM foo WHERE x = $x", vars=dict(x='f'), _test=True) <sql: "SELECT * FROM foo WHERE x = 'f'"> >>> db.query("SELECT * FROM foo WHERE x = " + sqlquote('f'), _test=True) <sql: "SELECT * FROM foo WHERE x = 'f'"> """ if svars is None: svars = {} if not processed and not isinstance(sql_query, SQLQuery): sql_query = reparam(sql_query, svars) return sql_query def sql_clauses(self, what, tables, where, group, order, limit, offset): return ( ('SELECT', what), ('FROM', sqllist(tables)), ('WHERE', where), ('GROUP BY', group), ('ORDER BY', order), ('LIMIT', limit), ('OFFSET', offset)) def gen_clause(self, sql, val, svars): if isinstance(val, (int, long)): if sql == 'WHERE': nout = 'id = ' + sqlquote(val) else: nout = SQLQuery(val) elif isinstance(val, (list, tuple)) and len(val) == 2: nout = SQLQuery(val[0], val[1]) # backwards-compatibility elif isinstance(val, SQLQuery): nout = val else: nout = reparam(val, svars) def xjoin(a, b): if a and b: return a + ' ' + b else: return a or b return xjoin(sql, nout) def _where(self, where, svars): if isinstance(where, (int, long)): where = "id = " + sqlparam(where) elif isinstance(where, (list, tuple)) and len(where) == 2: where = SQLQuery(where[0], where[1]) elif isinstance(where, SQLQuery): pass else: where = reparam(where, svars) return where def select(self, tables, svars=None, what='*', where=None, order=None, group=None, limit=None, offset=None, _test=False): """ Selects `what` from `tables` with clauses `where`, `order`, `group`, `limit`, and `offset`. Uses vars to interpolate. Otherwise, each clause can be a SQLQuery. >>> db = DB(None, {}) >>> db.select('foo', _test=True) <sql: 'SELECT * FROM foo'> >>> db.select(['foo', 'bar'], where="foo.bar_id = bar.id", limit=5, _test=True) <sql: 'SELECT * FROM foo, bar WHERE foo.bar_id = bar.id LIMIT 5'> """ if svars is None: svars = {} sql_clauses = self.sql_clauses(what, tables, where, group, order, limit, offset) clauses = [self.gen_clause(sql, val, svars) for sql, val in sql_clauses if val is not None] qout = SQLQuery.join(clauses) if _test: return qout return self.query(qout, processed=True) def insert(self, tablename, seqname=None, _test=False, **values): """ Inserts `values` into `tablename`. Returns current sequence ID. Set `seqname` to the ID if it's not the default, or to `False` if there isn't one. >>> db = DB(None, {}) >>> q = db.insert('foo', name='bob', age=2, created=SQLLiteral('NOW()'), _test=True) >>> q <sql: "INSERT INTO foo (age, name, created) VALUES (2, 'bob', NOW())"> >>> q.query() 'INSERT INTO foo (age, name, created) VALUES (%s, %s, NOW())' >>> q.values() [2, 'bob'] """ def q(x): return "(" + x + ")" if values: _keys = SQLQuery.join(values.keys(), ', ') _values = SQLQuery.join([sqlparam(v) for v in values.values()], ', ') sql_query = "INSERT INTO %s " % tablename + q(_keys) + ' VALUES ' + q(_values) else: sql_query = SQLQuery(self._get_insert_default_values_query(tablename)) return sql_query def _get_insert_default_values_query(self, table): return "INSERT INTO %s DEFAULT VALUES" % table def multiple_insert(self, tablename, values, seqname=None, _test=False): """ Inserts multiple rows into `tablename`. The `values` must be a list of dictioanries, one for each row to be inserted, each with the same set of keys. Returns the list of ids of the inserted rows. Set `seqname` to the ID if it's not the default, or to `False` if there isn't one. >>> db = DB(None, {}) >>> db.supports_multiple_insert = True >>> values = [{"name": "foo", "email": "<EMAIL>"}, {"name": "bar", "email": "<EMAIL>"}] >>> db.multiple_insert('person', values=values, _test=True) <sql: "INSERT INTO person (name, email) VALUES ('foo', '<EMAIL>'), ('bar', '<EMAIL>')"> """ if not values: return [] if not self.supports_multiple_insert: out = [self.insert(tablename, seqname=seqname, _test=_test, **v) for v in values] if seqname is False: return None else: return out keys = values[0].keys() #@@ make sure all keys are valid # make sure all rows have same keys. for v in values: if v.keys() != keys: raise ValueError, 'Bad data' sql_query = SQLQuery('INSERT INTO %s (%s) VALUES ' % (tablename, ', '.join(keys))) for i, row in enumerate(values): if i != 0: sql_query.append(", ") SQLQuery.join([SQLParam(row[k]) for k in keys], sep=", ", target=sql_query, prefix="(", suffix=")") if _test: return sql_query db_cursor = self._db_cursor() if seqname is not False: sql_query = self._process_insert_query(sql_query, tablename, seqname) if isinstance(sql_query, tuple): # for some databases, a separate query has to be made to find # the id of the inserted row. q1, q2 = sql_query self._db_execute(db_cursor, q1) self._db_execute(db_cursor, q2) else: self._db_execute(db_cursor, sql_query) try: out = db_cursor.fetchone()[0] out = range(out-len(values)+1, out+1) except Exception: out = None if not self.ctx.transactions: self.ctx.commit() return out def update(self, tables, where, svars=None, _test=False, **values): """ Update `tables` with clause `where` (interpolated using `vars`) and setting `values`. >>> db = DB(None, {}) >>> name = 'Joseph' >>> q = db.update('foo', where='name = $name', name='bob', age=2, ... created=SQLLiteral('NOW()'), vars=locals(), _test=True) >>> q <sql: "UPDATE foo SET age = 2, name = 'bob', created = NOW() WHERE name = 'Joseph'"> >>> q.query() 'UPDATE foo SET age = %s, name = %s, created = NOW() WHERE name = %s' >>> q.values() [2, 'bob', 'Joseph'] """ if svars is None: svars = {} where = self._where(where, svars) query = ( "UPDATE " + sqllist(tables) + " SET " + sqlwhere(values, ', ') + " WHERE " + where) if _test: return query db_cursor = self._db_cursor() self._db_execute(db_cursor, query) if not self.ctx.transactions: self.ctx.commit() return db_cursor.rowcount def delete(self, table, where, using=None, svars=None, _test=False): """ Deletes from `table` with clauses `where` and `using`. >>> db = DB(None, {}) >>> name = 'Joe' >>> db.delete('foo', where='name = $name', vars=locals(), _test=True) <sql: "DELETE FROM foo WHERE name = 'Joe'"> """ if svars is None: svars = {} where = self._where(where, svars) q = 'DELETE FROM ' + table if using: q += ' USING ' + sqllist(using) if where: q += ' WHERE ' + where return q sqlproducer = SQLProducer()
Arrays/LeftRotation.py
anand722000/algo_ds_101
175
286
#!/bin/python3 import math import os import random import re import sys # Complete the rotLeft function below. def rotLeft(a, d): alist = list(a) b = alist[d:]+alist[:d] return b if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') nd = input().split() n = int(nd[0]) d = int(nd[1]) a = list(map(int, input().rstrip().split())) result = rotLeft(a, d) fptr.write(' '.join(map(str, result))) fptr.write('\n') fptr.close()
nearpy/examples/example2.py
samyoo78/NearPy
624
289
# -*- coding: utf-8 -*- # Copyright (c) 2013 <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import numpy import scipy import unittest import time from nearpy import Engine from nearpy.distances import CosineDistance from nearpy.hashes import RandomBinaryProjections, HashPermutations, HashPermutationMapper def example2(): # Dimension of feature space DIM = 100 # Number of data points (dont do too much because of exact search) POINTS = 20000 ########################################################## print('Performing indexing with HashPermutations...') t0 = time.time() # Create permutations meta-hash permutations = HashPermutations('permut') # Create binary hash as child hash rbp_perm = RandomBinaryProjections('rbp_perm', 14) rbp_conf = {'num_permutation':50,'beam_size':10,'num_neighbour':100} # Add rbp as child hash of permutations hash permutations.add_child_hash(rbp_perm, rbp_conf) # Create engine engine_perm = Engine(DIM, lshashes=[permutations], distance=CosineDistance()) # First index some random vectors matrix = numpy.zeros((POINTS,DIM)) for i in range(POINTS): v = numpy.random.randn(DIM) matrix[i] = v engine_perm.store_vector(v) # Then update permuted index permutations.build_permuted_index() t1 = time.time() print('Indexing took %f seconds' % (t1-t0)) # Get random query vector query = numpy.random.randn(DIM) # Do random query on engine 3 print('\nNeighbour distances with HashPermutations:') print(' -> Candidate count is %d' % engine_perm.candidate_count(query)) results = engine_perm.neighbours(query) dists = [x[2] for x in results] print(dists) # Real neighbours print('\nReal neighbour distances:') query = query.reshape((DIM)) dists = CosineDistance().distance(matrix, query) dists = dists.reshape((-1,)) dists = sorted(dists) print(dists[:10]) ########################################################## print('\nPerforming indexing with HashPermutationMapper...') t0 = time.time() # Create permutations meta-hash permutations2 = HashPermutationMapper('permut2') # Create binary hash as child hash rbp_perm2 = RandomBinaryProjections('rbp_perm2', 14) # Add rbp as child hash of permutations hash permutations2.add_child_hash(rbp_perm2) # Create engine engine_perm2 = Engine(DIM, lshashes=[permutations2], distance=CosineDistance()) # First index some random vectors matrix = numpy.zeros((POINTS,DIM)) for i in range(POINTS): v = numpy.random.randn(DIM) matrix[i] = v engine_perm2.store_vector(v) t1 = time.time() print('Indexing took %f seconds' % (t1-t0)) # Get random query vector query = numpy.random.randn(DIM) # Do random query on engine 4 print('\nNeighbour distances with HashPermutationMapper:') print(' -> Candidate count is %d' % engine_perm2.candidate_count(query)) results = engine_perm2.neighbours(query) dists = [x[2] for x in results] print(dists) # Real neighbours print('\nReal neighbour distances:') query = query.reshape((DIM)) dists = CosineDistance().distance(matrix,query) dists = dists.reshape((-1,)) dists = sorted(dists) print(dists[:10]) ########################################################## print('\nPerforming indexing with multiple binary hashes...') t0 = time.time() hashes = [] for k in range(20): hashes.append(RandomBinaryProjections('rbp_%d' % k, 10)) # Create engine engine_rbps = Engine(DIM, lshashes=hashes, distance=CosineDistance()) # First index some random vectors matrix = numpy.zeros((POINTS,DIM)) for i in range(POINTS): v = numpy.random.randn(DIM) matrix[i] = v engine_rbps.store_vector(v) t1 = time.time() print('Indexing took %f seconds' % (t1-t0)) # Get random query vector query = numpy.random.randn(DIM) # Do random query on engine 4 print('\nNeighbour distances with multiple binary hashes:') print(' -> Candidate count is %d' % engine_rbps.candidate_count(query)) results = engine_rbps.neighbours(query) dists = [x[2] for x in results] print(dists) # Real neighbours print('\nReal neighbour distances:') query = query.reshape((DIM)) dists = CosineDistance().distance(matrix,query) dists = dists.reshape((-1,)) dists = sorted(dists) print(dists[:10]) ##########################################################
src/mem/slicc/ast/TypeDeclAST.py
qianlong4526888/haha
135
299
# Copyright (c) 1999-2008 <NAME> and <NAME> # Copyright (c) 2009 The Hewlett-Packard Development Company # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from slicc.ast.DeclAST import DeclAST from slicc.symbols.Type import Type class TypeDeclAST(DeclAST): def __init__(self, slicc, type_ast, pairs, field_asts): super(TypeDeclAST, self).__init__(slicc, pairs) self.type_ast = type_ast self.field_asts = field_asts def __repr__(self): return "[TypeDecl: %r]" % (self.type_ast) def files(self, parent=None): if "external" in self: return set() if parent: ident = "%s_%s" % (parent, self.type_ast.ident) else: ident = self.type_ast.ident return set(("%s.hh" % ident, "%s.cc" % ident)) def generate(self): ident = str(self.type_ast) machine = self.symtab.state_machine # Make the new type new_type = Type(self.symtab, ident, self.location, self.pairs, self.state_machine) if machine: machine.addType(new_type) self.symtab.newSymbol(new_type) self.symtab.pushFrame() # Add all of the fields of the type to it for field in self.field_asts: field.generate(new_type) self.symtab.popFrame()
src/biotite/file.py
danijoo/biotite
208
308
<reponame>danijoo/biotite # This source code is part of the Biotite package and is distributed # under the 3-Clause BSD License. Please see 'LICENSE.rst' for further # information. __name__ = "biotite" __author__ = "<NAME>" __all__ = ["File", "TextFile", "InvalidFileError"] import abc import io import warnings from .copyable import Copyable import copy class File(Copyable, metaclass=abc.ABCMeta): """ Base class for all file classes. The constructor creates an empty file, that can be filled with data using the class specific setter methods. Conversely, the class method :func:`read()` reads a file from disk (or a file-like object from other sources). In order to write the instance content into a file the :func:`write()` method is used. """ def __init__(self): # Support for deprecated instance method 'read()': # When creating an instance, the 'read()' class method is # replaced by the instance method, so that subsequent # 'read()' calls are delegated to the instance method self.read = self._deprecated_read @classmethod @abc.abstractmethod def read(cls, file): """ Parse a file (or file-like object). Parameters ---------- file : file-like object or str The file to be read. Alternatively a file path can be supplied. Returns ------- file_object : File An instance from the respective :class:`File` subclass representing the parsed file. """ pass def _deprecated_read(self, file, *args, **kwargs): """ Support for deprecated instance method :func:`read()`. Internally this calls the :func:`read()` class method and replaces the data in `self` with the data from the newly created :class:`File` object """ warnings.warn( "Instance method 'read()' is deprecated, " "use class method instead", DeprecationWarning ) cls = type(self) new_file = cls.read(file, *args, **kwargs) self.__dict__.update(new_file.__dict__) @abc.abstractmethod def write(self, file): """ Write the contents of this :class:`File` object into a file. Parameters ---------- file_name : file-like object or str The file to be written to. Alternatively a file path can be supplied. """ pass class TextFile(File, metaclass=abc.ABCMeta): """ Base class for all line based text files. When reading a file, the text content is saved as list of strings, one for each line. When writing a file, this list is written into the file. Attributes ---------- lines : list List of string representing the lines in the text file. PROTECTED: Do not modify from outside. """ def __init__(self): super().__init__() self.lines = [] @classmethod def read(cls, file, *args, **kwargs): # File name if isinstance(file, str): with open(file, "r") as f: lines = f.read().splitlines() # File object else: if not is_text(file): raise TypeError("A file opened in 'text' mode is required") lines = file.read().splitlines() file_object = cls(*args, **kwargs) file_object.lines = lines return file_object @staticmethod def read_iter(file): """ Create an iterator over each line of the given text file. Parameters ---------- file : file-like object or str The file to be read. Alternatively a file path can be supplied. Yields ------ line : str The current line in the file. """ # File name if isinstance(file, str): with open(file, "r") as f: while True: line = f.readline() if not line: break yield line # File object else: if not is_text(file): raise TypeError("A file opened in 'text' mode is required") while True: line = file.readline() if not line: break yield line def write(self, file): """ Write the contents of this object into a file (or file-like object). Parameters ---------- file_name : file-like object or str The file to be written to. Alternatively a file path can be supplied. """ if isinstance(file, str): with open(file, "w") as f: f.write("\n".join(self.lines) + "\n") else: if not is_text(file): raise TypeError("A file opened in 'text' mode is required") file.write("\n".join(self.lines) + "\n") def __copy_fill__(self, clone): super().__copy_fill__(clone) clone.lines = copy.copy(self.lines) def __str__(self): return("\n".join(self.lines)) class InvalidFileError(Exception): """ Indicates that the file is not suitable for the requested action, either because the file does not contain the required data or because the file is malformed. """ pass def wrap_string(text, width): """ A much simpler and hence much more efficient version of `textwrap.wrap()`. This function simply wraps the given `text` after `width` characters, ignoring sentences, whitespaces, etc. """ lines = [] for i in range(0, len(text), width): lines.append(text[i : i+width]) return lines def is_binary(file): if isinstance(file, io.BufferedIOBase): return True # for file wrappers, e.g. 'TemporaryFile' elif hasattr(file, "file") and isinstance(file.file, io.BufferedIOBase): return True else: return False def is_text(file): if isinstance(file, io.TextIOBase): return True # for file wrappers, e.g. 'TemporaryFile' elif hasattr(file, "file") and isinstance(file.file, io.TextIOBase): return True else: return False
electrum/dnssec.py
Jesusown/electrum
5,905
321
#!/usr/bin/env python # # Electrum - lightweight Bitcoin client # Copyright (C) 2015 <NAME> # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Check DNSSEC trust chain. # Todo: verify expiration dates # # Based on # http://backreference.org/2010/11/17/dnssec-verification-with-dig/ # https://github.com/rthalley/dnspython/blob/master/tests/test_dnssec.py import dns import dns.name import dns.query import dns.dnssec import dns.message import dns.resolver import dns.rdatatype import dns.rdtypes.ANY.NS import dns.rdtypes.ANY.CNAME import dns.rdtypes.ANY.DLV import dns.rdtypes.ANY.DNSKEY import dns.rdtypes.ANY.DS import dns.rdtypes.ANY.NSEC import dns.rdtypes.ANY.NSEC3 import dns.rdtypes.ANY.NSEC3PARAM import dns.rdtypes.ANY.RRSIG import dns.rdtypes.ANY.SOA import dns.rdtypes.ANY.TXT import dns.rdtypes.IN.A import dns.rdtypes.IN.AAAA from .logging import get_logger _logger = get_logger(__name__) # hard-coded trust anchors (root KSKs) trust_anchors = [ # KSK-2017: dns.rrset.from_text('.', 1 , 'IN', 'DNSKEY', '<KEY>), # KSK-2010: dns.rrset.from_text('.', 15202, 'IN', 'DNSKEY', '257 3 8 AwEAAagAIKlVZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQbSEW0O8gcCjF FVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh/RStIoO8g0NfnfL2MTJRkxoX bfDaUeVPQuYEhg37NZWAJQ9VnMVDxP/VHL496M/QZxkjf5/Efucp2gaD X6RS6CXpoY68LsvPVjR0ZSwzz1apAzvN9dlzEheX7ICJBBtuA6G3LQpz W<KEY>S Qageu+ipAdTTJ25AsRTAoub8ONGcLmqrAmRLKBP1dfwhYB4N7knNnulq QxA+Uk1ihz0='), ] def _check_query(ns, sub, _type, keys): q = dns.message.make_query(sub, _type, want_dnssec=True) response = dns.query.tcp(q, ns, timeout=5) assert response.rcode() == 0, 'No answer' answer = response.answer assert len(answer) != 0, ('No DNS record found', sub, _type) assert len(answer) != 1, ('No DNSSEC record found', sub, _type) if answer[0].rdtype == dns.rdatatype.RRSIG: rrsig, rrset = answer elif answer[1].rdtype == dns.rdatatype.RRSIG: rrset, rrsig = answer else: raise Exception('No signature set in record') if keys is None: keys = {dns.name.from_text(sub):rrset} dns.dnssec.validate(rrset, rrsig, keys) return rrset def _get_and_validate(ns, url, _type): # get trusted root key root_rrset = None for dnskey_rr in trust_anchors: try: # Check if there is a valid signature for the root dnskey root_rrset = _check_query(ns, '', dns.rdatatype.DNSKEY, {dns.name.root: dnskey_rr}) break except dns.dnssec.ValidationFailure: # It's OK as long as one key validates continue if not root_rrset: raise dns.dnssec.ValidationFailure('None of the trust anchors found in DNS') keys = {dns.name.root: root_rrset} # top-down verification parts = url.split('.') for i in range(len(parts), 0, -1): sub = '.'.join(parts[i-1:]) name = dns.name.from_text(sub) # If server is authoritative, don't fetch DNSKEY query = dns.message.make_query(sub, dns.rdatatype.NS) response = dns.query.udp(query, ns, 3) assert response.rcode() == dns.rcode.NOERROR, "query error" rrset = response.authority[0] if len(response.authority) > 0 else response.answer[0] rr = rrset[0] if rr.rdtype == dns.rdatatype.SOA: continue # get DNSKEY (self-signed) rrset = _check_query(ns, sub, dns.rdatatype.DNSKEY, None) # get DS (signed by parent) ds_rrset = _check_query(ns, sub, dns.rdatatype.DS, keys) # verify that a signed DS validates DNSKEY for ds in ds_rrset: for dnskey in rrset: htype = 'SHA256' if ds.digest_type == 2 else 'SHA1' good_ds = dns.dnssec.make_ds(name, dnskey, htype) if ds == good_ds: break else: continue break else: raise Exception("DS does not match DNSKEY") # set key for next iteration keys = {name: rrset} # get TXT record (signed by zone) rrset = _check_query(ns, url, _type, keys) return rrset def query(url, rtype): # 8.8.8.8 is Google's public DNS server nameservers = ['8.8.8.8'] ns = nameservers[0] try: out = _get_and_validate(ns, url, rtype) validated = True except Exception as e: _logger.info(f"DNSSEC error: {repr(e)}") out = dns.resolver.resolve(url, rtype) validated = False return out, validated
TopQuarkAnalysis/TopJetCombination/python/TtSemiLepJetCombMaxSumPtWMass_cfi.py
ckamtsikis/cmssw
852
340
import FWCore.ParameterSet.Config as cms # # module to make the MaxSumPtWMass jet combination # findTtSemiLepJetCombMaxSumPtWMass = cms.EDProducer("TtSemiLepJetCombMaxSumPtWMass", ## jet input jets = cms.InputTag("selectedPatJets"), ## lepton input leps = cms.InputTag("selectedPatMuons"), ## maximum number of jets to be considered maxNJets = cms.int32(4), ## nominal WMass parameter (in GeV) wMass = cms.double(80.4), ## use b-tagging two distinguish between light and b jets useBTagging = cms.bool(False), ## choose algorithm for b-tagging bTagAlgorithm = cms.string("trackCountingHighEffBJetTags"), ## minimum b discriminator value required for b jets and ## maximum b discriminator value allowed for non-b jets minBDiscBJets = cms.double(1.0), maxBDiscLightJets = cms.double(3.0) )
libsaas/services/twilio/applications.py
MidtownFellowship/libsaas
155
344
<gh_stars>100-1000 from libsaas import http, parsers from libsaas.services import base from libsaas.services.twilio import resource class ApplicationsBase(resource.TwilioResource): path = 'Applications' class Application(ApplicationsBase): def create(self, *args, **kwargs): raise base.MethodNotSupported() class Applications(ApplicationsBase): @base.apimethod def get(self, FriendlyName=None, Page=None, PageSize=None, AfterSid=None): """ Fetch the Applications belonging to an account. :var FriendlyName: Only return the Account resources with friendly names that exactly match this name. :vartype FriendlyName: str :var Page: The current page number. Zero-indexed, so the first page is 0. :vartype Page: int :var PageSize: How many resources to return in each list page. The default is 50, and the maximum is 1000. :vartype PageSize: int :var AfterSid: The last Sid returned in the previous page, used to avoid listing duplicated resources if new ones are created while paging. :vartype AfterSid: str """ params = resource.get_params(None, locals()) request = http.Request('GET', self.get_url(), params) return request, parsers.parse_json def update(self, *args, **kwargs): raise base.MethodNotSupported() def delete(self, *args, **kwargs): raise base.MethodNotSupported() class ConnectAppsBase(resource.TwilioResource): path = 'ConnectApps' def create(self, *args, **kwargs): raise base.MethodNotSupported() def delete(self, *args, **kwargs): raise base.MethodNotSupported() class ConnectApp(ConnectAppsBase): pass class ConnectApps(ConnectAppsBase): @base.apimethod def get(self, Page=None, PageSize=None, AfterSid=None): """ Fetch the Connect Apps belonging to an account. :var Page: The current page number. Zero-indexed, so the first page is 0. :vartype Page: int :var PageSize: How many resources to return in each list page. The default is 50, and the maximum is 1000. :vartype PageSize: int :var AfterSid: The last Sid returned in the previous page, used to avoid listing duplicated resources if new ones are created while paging. :vartype AfterSid: str """ params = resource.get_params(None, locals()) request = http.Request('GET', self.get_url(), params) return request, parsers.parse_json def update(self, *args, **kwargs): raise base.MethodNotSupported() class AuthorizedConnectAppsBase(resource.TwilioResource): path = 'AuthorizedConnectApps' def create(self, *args, **kwargs): raise base.MethodNotSupported() def update(self, *args, **kwargs): raise base.MethodNotSupported() def delete(self, *args, **kwargs): raise base.MethodNotSupported() class AuthorizedConnectApp(AuthorizedConnectAppsBase): pass class AuthorizedConnectApps(AuthorizedConnectAppsBase): @base.apimethod def get(self, Page=None, PageSize=None, AfterSid=None): """ Fetch the Authorized Connect Apps belonging to an account. :var Page: The current page number. Zero-indexed, so the first page is 0. :vartype Page: int :var PageSize: How many resources to return in each list page. The default is 50, and the maximum is 1000. :vartype PageSize: int :var AfterSid: The last Sid returned in the previous page, used to avoid listing duplicated resources if new ones are created while paging. :vartype AfterSid: str """ params = resource.get_params(None, locals()) request = http.Request('GET', self.get_url(), params) return request, parsers.parse_json
tests/ast/nodes/test_from_node.py
upgradvisor/vyper
1,471
351
from vyper import ast as vy_ast def test_output_class(): old_node = vy_ast.parse_to_ast("foo = 42") new_node = vy_ast.Int.from_node(old_node, value=666) assert isinstance(new_node, vy_ast.Int) def test_source(): old_node = vy_ast.parse_to_ast("foo = 42") new_node = vy_ast.Int.from_node(old_node, value=666) assert old_node.src == new_node.src assert old_node.node_source_code == new_node.node_source_code def test_kwargs(): old_node = vy_ast.parse_to_ast("42").body[0].value new_node = vy_ast.Int.from_node(old_node, value=666) assert old_node.value == 42 assert new_node.value == 666 def test_compare_nodes(): old_node = vy_ast.parse_to_ast("foo = 42") new_node = vy_ast.Int.from_node(old_node, value=666) assert not vy_ast.compare_nodes(old_node, new_node) def test_new_node_has_no_parent(): old_node = vy_ast.parse_to_ast("foo = 42") new_node = vy_ast.Int.from_node(old_node, value=666) assert new_node._parent is None assert new_node._depth == 0
Python/Examples/Macros/SettingsAxesOptimization.py
archformco/RoboDK-API
161
425
# This example shows how to read or modify the Axes Optimization settings using the RoboDK API and a JSON string. # You can select "Axes optimization" in a robot machining menu or the robot parameters to view the axes optimization settings. # It is possible to update the axes optimization settings attached to a robot or a robot machining project manually or using the API. # # More information about the RoboDK API here: # https://robodk.com/doc/en/RoboDK-API.html # For more information visit: # https://robodk.com/doc/en/PythonAPI/robolink.html from robolink import * # RoboDK API # JSON tools import json # Start the RoboDK API RDK = Robolink() # Ask the user to select a robot arm (6 axis robot wich can have external axes) robot = RDK.ItemUserPick("Select a robot arm",ITEM_TYPE_ROBOT_ARM) # Default optimization settings test template AxesOptimSettings = { # Optimization parameters: "Active": 1, # Use generic axes optimization: 0=Disabled or 1=Enabled "Algorithm": 2, # Optimization algorithm to use: 1=Nelder Mead, 2=Samples, 3=Samples+Nelder Mead "MaxIter": 650, # Max. number of iterations "Tol": 0.0016, # Tolerance to stop iterations # Absolute Reference joints (double): "AbsJnt_1": 104.17, "AbsJnt_2": 11.22, "AbsJnt_3": 15.97, "AbsJnt_4": -87.48, "AbsJnt_5": -75.36, "AbsJnt_6": 63.03, "AbsJnt_7": 174.13, "AbsJnt_8": 173.60, "AbsJnt_9": 0, # Using Absolute reference joints (0: No, 1: Yes): "AbsOn_1": 1, "AbsOn_2": 1, "AbsOn_3": 1, "AbsOn_4": 1, "AbsOn_5": 1, "AbsOn_6": 1, "AbsOn_7": 1, "AbsOn_8": 1, "AbsOn_9": 1, # Weight for absolute reference joints (double): "AbsW_1": 100, "AbsW_2": 100, "AbsW_3": 100, "AbsW_4": 89, "AbsW_5": 90, "AbsW_6": 92, "AbsW_7": 92, "AbsW_8": 96, "AbsW_9": 50, # Using for relative joint motion smoothing (0: No, 1: Yes): "RelOn_1": 1, "RelOn_2": 1, "RelOn_3": 1, "RelOn_4": 1, "RelOn_5": 1, "RelOn_6": 1, "RelOn_7": 1, "RelOn_8": 1, "RelOn_9": 1, # Weight for relative joint motion (double): "RelW_1": 5, "RelW_2": 47, "RelW_3": 44, "RelW_4": 43, "RelW_5": 36, "RelW_6": 47, "RelW_7": 53, "RelW_8": 59, "RelW_9": 0, } # Update one value, for example, make it active: ToUpdate = {} ToUpdate["Active"] = 1 json_str = json.dumps(json.dumps(ToUpdate)) status = robot.setParam("OptimAxes", json_str) print(status) # Example to make a partial or full update count = 1 while True: for i in range(7): # Partial update ToUpdate = {} ToUpdate["AbsJnt_" + str(i+1)] = (count+i)*4 ToUpdate["AbsOn_" + str(i+1)] = count % 2 ToUpdate["AbsW_" + str(i+1)] = (count+i) json_str = json.dumps(json.dumps(ToUpdate)) status = robot.setParam("OptimAxes", json_str) print(status) # Full update #OptimAxes_TEST["RefJoint_" + str(i+1)] = (count+i)*4 #OptimAxes_TEST["RefWeight_" + str(i+1)] = (count+i) #OptimAxes_TEST["RefOn_" + str(i+1)] = count % 2 # Full update #print(robot.setParam("OptimAxes", str(AxesOptimSettings))) count = count + 1 # Read settings json_data = robot.setParam("OptimAxes") json_object = json.loads(json_data) print(json.dumps(json_object, indent=4)) pause(0.2) # Example to read the current axes optimization settings: while True: json_data = robot.setParam("OptimAxes") json_object = json.loads(json_data) print(json.dumps(json_object, indent=4)) pause(0.2)
tests/test.py
kjanik70/tflearn
10,882
433
''' This file contains test cases for tflearn ''' import tensorflow.compat.v1 as tf import tflearn import unittest class TestActivations(unittest.TestCase): ''' This class contains test cases for the functions in tflearn/activations.py ''' PLACES = 4 # Number of places to match when testing floating point values def test_linear(self): f = tflearn.linear # Case 1 x = tf.placeholder(tf.float32, shape=()) self.assertEqual(f(x), x) # Case 2 x = tf.placeholder(tf.int64, shape=()) self.assertEqual(f(x), x) def test_tanh(self): f = tflearn.tanh x = tf.placeholder(tf.float32, shape=()) with tf.Session() as sess: # Case 1 self.assertEqual(sess.run(f(x), feed_dict={x:0}), 0) # Case 2 self.assertAlmostEqual(sess.run(f(x), feed_dict={x:0.5}), 0.4621, places=TestActivations.PLACES) # Case 3 self.assertAlmostEqual(sess.run(f(x), feed_dict={x:-0.25}), -0.2449, places=TestActivations.PLACES) def test_leaky_relu(self): f = lambda x: tflearn.leaky_relu(x, alpha=0.2) x = tf.placeholder(tf.float32, shape=()) with tf.Session() as sess: # Case 1 self.assertEqual(sess.run(f(x), feed_dict={x:0}), 0) # Case 2 self.assertAlmostEqual(sess.run(f(x), feed_dict={x:1}), 1, places=TestActivations.PLACES) # Case 3 self.assertAlmostEqual(sess.run(f(x), feed_dict={x:-1}), -0.2, places=TestActivations.PLACES) # Case 4 self.assertAlmostEqual(sess.run(f(x), feed_dict={x:-5}), -1, places=TestActivations.PLACES) def test_apply_activation(self): lrelu_02 = lambda x: tflearn.leaky_relu(x, alpha=0.2) x = tf.constant(-0.25, tf.float32) with tf.Session() as sess: # Case 1: 'linear' self.assertEqual( sess.run(tflearn.activation(x, 'linear')), -0.25) # Case 2: 'relu' self.assertEqual( sess.run(tflearn.activation(x, 'relu')), 0) # Case 3: 'leaky_relu' self.assertAlmostEqual( sess.run(tflearn.activation(x, 'leaky_relu')), -0.025, places=TestActivations.PLACES) # Case 4: 'tanh' self.assertAlmostEqual( sess.run(tflearn.activation(x, 'tanh')), -0.2449, places=TestActivations.PLACES) # Case 5: lrelu_02 (callable) self.assertAlmostEqual( sess.run(tflearn.activation(x, lrelu_02)), -0.05, places=TestActivations.PLACES) if __name__ == "__main__": unittest.main()
venv/Lib/site-packages/patsy/test_regressions.py
EkremBayar/bayar
710
443
# This file is part of Patsy # Copyright (C) 2013 <NAME> <<EMAIL>> # See file LICENSE.txt for license information. # Regression tests for fixed bugs (when not otherwise better covered somewhere # else) from patsy import (EvalEnvironment, dmatrix, build_design_matrices, PatsyError, Origin) def test_issue_11(): # Give a sensible error message for level mismatches # (At some points we've failed to put an origin= on these errors) env = EvalEnvironment.capture() data = {"X" : [0,1,2,3], "Y" : [1,2,3,4]} formula = "C(X) + Y" new_data = {"X" : [0,0,1,2,3,3,4], "Y" : [1,2,3,4,5,6,7]} info = dmatrix(formula, data) try: build_design_matrices([info.design_info], new_data) except PatsyError as e: assert e.origin == Origin(formula, 0, 4) else: assert False
vimfiles/bundle/vim-python/submodules/pylint/tests/functional/s/super/super_with_arguments.py
ciskoinch8/vimrc
463
447
<filename>vimfiles/bundle/vim-python/submodules/pylint/tests/functional/s/super/super_with_arguments.py class Foo: pass class Bar(Foo): def __init__(self): super(Bar, self).__init__() # [super-with-arguments] class Baz(Foo): def __init__(self): super().__init__() class Qux(Foo): def __init__(self): super(Bar, self).__init__() class NotSuperCall(Foo): def __init__(self): super.test(Bar, self).__init__() class InvalidSuperCall(Foo): def __init__(self): super(InvalidSuperCall.__class__, self).__init__() def method_accepting_cls(cls, self): # Using plain `super()` is not valid here, since there's no `__class__` cell found # (Exact exception would be 'RuntimeError: super(): __class__ cell not found') # Instead, we expect to *not* see a warning about `super-with-arguments`. # Explicitly passing `cls`, and `self` to `super()` is what's required. super(cls, self).__init__()
examples/cmrc2018_example/main.trainer.py
fangd123/TextBrewer
1,121
480
<filename>examples/cmrc2018_example/main.trainer.py<gh_stars>1000+ import logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%Y/%m/%d %H:%M:%S', level=logging.INFO, ) logger = logging.getLogger("Main") import os,random import numpy as np import torch from processing import convert_examples_to_features, read_squad_examples from processing import ChineseFullTokenizer from pytorch_pretrained_bert.my_modeling import BertConfig from optimization import BERTAdam import config from utils import read_and_convert, divide_parameters from modeling import BertForQASimple, BertForQASimpleAdaptorTraining from textbrewer import DistillationConfig, TrainingConfig, BasicTrainer from torch.utils.data import TensorDataset, DataLoader, RandomSampler from functools import partial from train_eval import predict def args_check(args): if os.path.exists(args.output_dir) and os.listdir(args.output_dir): logger.warning("Output directory () already exists and is not empty.") if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( args.gradient_accumulation_steps)) if not args.do_train and not args.do_predict: raise ValueError("At least one of `do_train` or `do_predict` must be True.") if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() if not args.no_cuda else 0 else: device = torch.device("cuda", args.local_rank) n_gpu = 1 torch.distributed.init_process_group(backend='nccl') logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1)) args.n_gpu = n_gpu args.device = device return device, n_gpu def main(): #parse arguments config.parse() args = config.args for k,v in vars(args).items(): logger.info(f"{k}:{v}") #set seeds torch.manual_seed(args.random_seed) torch.cuda.manual_seed_all(args.random_seed) np.random.seed(args.random_seed) random.seed(args.random_seed) #arguments check device, n_gpu = args_check(args) os.makedirs(args.output_dir, exist_ok=True) forward_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) args.forward_batch_size = forward_batch_size #load bert config bert_config_S = BertConfig.from_json_file(args.bert_config_file_S) assert args.max_seq_length <= bert_config_S.max_position_embeddings #read data train_examples = None train_features = None eval_examples = None eval_features = None num_train_steps = None tokenizer = ChineseFullTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case) convert_fn = partial(convert_examples_to_features, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length) if args.do_train: train_examples,train_features = read_and_convert(args.train_file,is_training=True, do_lower_case=args.do_lower_case, read_fn=read_squad_examples,convert_fn=convert_fn) if args.fake_file_1: fake_examples1,fake_features1 = read_and_convert(args.fake_file_1,is_training=True, do_lower_case=args.do_lower_case, read_fn=read_squad_examples,convert_fn=convert_fn) train_examples += fake_examples1 train_features += fake_features1 if args.fake_file_2: fake_examples2, fake_features2 = read_and_convert(args.fake_file_2,is_training=True, do_lower_case=args.do_lower_case, read_fn=read_squad_examples,convert_fn=convert_fn) train_examples += fake_examples2 train_features += fake_features2 num_train_steps = int(len(train_features)/args.train_batch_size) * args.num_train_epochs if args.do_predict: eval_examples,eval_features = read_and_convert(args.predict_file,is_training=False, do_lower_case=args.do_lower_case, read_fn=read_squad_examples,convert_fn=convert_fn) #Build Model and load checkpoint model_S = BertForQASimple(bert_config_S,args) #Load student if args.load_model_type=='bert': assert args.init_checkpoint_S is not None state_dict_S = torch.load(args.init_checkpoint_S, map_location='cpu') state_weight = {k[5:]:v for k,v in state_dict_S.items() if k.startswith('bert.')} missing_keys,_ = model_S.bert.load_state_dict(state_weight,strict=False) assert len(missing_keys)==0 elif args.load_model_type=='all': assert args.tuned_checkpoint_S is not None state_dict_S = torch.load(args.tuned_checkpoint_S,map_location='cpu') model_S.load_state_dict(state_dict_S) else: logger.info("Model is randomly initialized.") model_S.to(device) if args.local_rank != -1 or n_gpu > 1: if args.local_rank != -1: raise NotImplementedError elif n_gpu > 1: model_S = torch.nn.DataParallel(model_S) #,output_device=n_gpu-1) if args.do_train: #parameters params = list(model_S.named_parameters()) all_trainable_params = divide_parameters(params, lr=args.learning_rate) logger.info("Length of all_trainable_params: %d", len(all_trainable_params)) optimizer = BERTAdam(all_trainable_params,lr=args.learning_rate, warmup=args.warmup_proportion,t_total=num_train_steps,schedule=args.schedule, s_opt1=args.s_opt1, s_opt2=args.s_opt2, s_opt3=args.s_opt3) logger.info("***** Running training *****") logger.info(" Num orig examples = %d", len(train_examples)) logger.info(" Num split examples = %d", len(train_features)) logger.info(" Forward batch size = %d", forward_batch_size) logger.info(" Num backward steps = %d", num_train_steps) ########### DISTILLATION ########### train_config = TrainingConfig( gradient_accumulation_steps = args.gradient_accumulation_steps, ckpt_frequency = args.ckpt_frequency, log_dir = args.output_dir, output_dir = args.output_dir, device = args.device) distiller = BasicTrainer(train_config = train_config, model = model_S, adaptor = BertForQASimpleAdaptorTraining) all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) all_doc_mask = torch.tensor([f.doc_mask for f in train_features], dtype=torch.float) all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long) all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long) train_dataset = TensorDataset(all_input_ids, all_segment_ids, all_input_mask, all_doc_mask, all_start_positions, all_end_positions) if args.local_rank == -1: train_sampler = RandomSampler(train_dataset) else: raise NotImplementedError train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.forward_batch_size,drop_last=True) callback_func = partial(predict, eval_examples=eval_examples, eval_features=eval_features, args=args) with distiller: distiller.train(optimizer, scheduler=None, dataloader=train_dataloader, num_epochs=args.num_train_epochs, callback=callback_func) if not args.do_train and args.do_predict: res = predict(model_S,eval_examples,eval_features,step=0,args=args) print (res) if __name__ == "__main__": main()
gn/gn_to_bp.py
despairblue/esy-skia
2,151
485
<reponame>despairblue/esy-skia #!/usr/bin/env python # # Copyright 2016 Google Inc. # # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # Generate Android.bp for Skia from GN configuration. import json import os import pprint import string import subprocess import tempfile import gn_to_bp_utils # First we start off with a template for Android.bp, # with holes for source lists and include directories. bp = string.Template('''// This file is autogenerated by gn_to_bp.py. cc_library_static { name: "libskia", cflags: [ $cflags ], cppflags:[ $cflags_cc ], export_include_dirs: [ $export_includes ], local_include_dirs: [ $local_includes ], srcs: [ $srcs ], arch: { arm: { srcs: [ $arm_srcs ], neon: { srcs: [ $arm_neon_srcs ], }, }, arm64: { srcs: [ $arm64_srcs ], }, mips: { srcs: [ $none_srcs ], }, mips64: { srcs: [ $none_srcs ], }, x86: { srcs: [ $x86_srcs ], cflags: [ // Clang seems to think new/malloc will only be 4-byte aligned // on x86 Android. We're pretty sure it's actually 8-byte // alignment. tests/OverAlignedTest.cpp has more information, // and should fail if we're wrong. "-Wno-over-aligned" ], }, x86_64: { srcs: [ $x86_srcs ], }, }, defaults: ["skia_deps", "skia_pgo", ], } // Build libskia with PGO by default. // Location of PGO profile data is defined in build/soong/cc/pgo.go // and is separate from skia. // To turn it off, set ANDROID_PGO_NO_PROFILE_USE environment variable // or set enable_profile_use property to false. cc_defaults { name: "skia_pgo", pgo: { instrumentation: true, profile_file: "hwui/hwui.profdata", benchmarks: ["hwui", "skia"], enable_profile_use: true, }, } // "defaults" property to disable profile use for Skia tools and benchmarks. cc_defaults { name: "skia_pgo_no_profile_use", defaults: [ "skia_pgo", ], pgo: { enable_profile_use: false, }, } cc_defaults { name: "skia_deps", shared_libs: [ "libEGL", "libGLESv2", "libdng_sdk", "libexpat", "libft2", "libheif", "libicui18n", "libicuuc", "libjpeg", "liblog", "libpiex", "libpng", "libvulkan", "libz", "libcutils", "libnativewindow", ], static_libs: [ "libarect", "libsfntly", "libwebp-decode", "libwebp-encode", ], group_static_libs: true, } cc_defaults { name: "skia_tool_deps", defaults: [ "skia_deps", "skia_pgo_no_profile_use" ], static_libs: [ "libjsoncpp", "libskia", ], cflags: [ "-Wno-unused-parameter", "-Wno-unused-variable", ], } cc_test { name: "skia_dm", defaults: [ "skia_tool_deps" ], local_include_dirs: [ $dm_includes ], srcs: [ $dm_srcs ], shared_libs: [ "libbinder", "libutils", ], } cc_test { name: "skia_nanobench", defaults: [ "skia_tool_deps" ], local_include_dirs: [ $nanobench_includes ], srcs: [ $nanobench_srcs ], data: [ "resources/*", ], }''') # We'll run GN to get the main source lists and include directories for Skia. gn_args = { 'is_official_build': 'true', 'skia_enable_tools': 'true', 'skia_enable_skottie': 'false', # requires rapidjson third-party 'skia_use_libheif': 'true', 'skia_use_vulkan': 'true', 'target_cpu': '"none"', 'target_os': '"android"', 'skia_vulkan_header': '"Skia_Vulkan_Android.h"', } js = gn_to_bp_utils.GenerateJSONFromGN(gn_args) def strip_slashes(lst): return {str(p.lstrip('/')) for p in lst} srcs = strip_slashes(js['targets']['//:skia']['sources']) cflags = strip_slashes(js['targets']['//:skia']['cflags']) cflags_cc = strip_slashes(js['targets']['//:skia']['cflags_cc']) local_includes = strip_slashes(js['targets']['//:skia']['include_dirs']) export_includes = strip_slashes(js['targets']['//:public']['include_dirs']) defines = [str(d) for d in js['targets']['//:skia']['defines']] dm_srcs = strip_slashes(js['targets']['//:dm']['sources']) dm_includes = strip_slashes(js['targets']['//:dm']['include_dirs']) nanobench_target = js['targets']['//:nanobench'] nanobench_srcs = strip_slashes(nanobench_target['sources']) nanobench_includes = strip_slashes(nanobench_target['include_dirs']) gn_to_bp_utils.GrabDependentValues(js, '//:skia', 'sources', srcs, None) gn_to_bp_utils.GrabDependentValues(js, '//:dm', 'sources', dm_srcs, 'skia') gn_to_bp_utils.GrabDependentValues(js, '//:nanobench', 'sources', nanobench_srcs, 'skia') # skcms is a little special, kind of a second-party library. srcs .add("third_party/skcms/skcms.c") local_includes.add("third_party/skcms") dm_includes .add("third_party/skcms") # No need to list headers. srcs = {s for s in srcs if not s.endswith('.h')} dm_srcs = {s for s in dm_srcs if not s.endswith('.h')} nanobench_srcs = {s for s in nanobench_srcs if not s.endswith('.h')} cflags = gn_to_bp_utils.CleanupCFlags(cflags) cflags_cc = gn_to_bp_utils.CleanupCCFlags(cflags_cc) # We need to add the include path to the vulkan defines and header file set in # then skia_vulkan_header gn arg that is used for framework builds. local_includes.add("platform_tools/android/vulkan") export_includes.add("platform_tools/android/vulkan") here = os.path.dirname(__file__) defs = gn_to_bp_utils.GetArchSources(os.path.join(here, 'opts.gni')) gn_to_bp_utils.WriteUserConfig('include/config/SkUserConfig.h', defines) # Turn a list of strings into the style bpfmt outputs. def bpfmt(indent, lst, sort=True): if sort: lst = sorted(lst) return ('\n' + ' '*indent).join('"%s",' % v for v in lst) # OK! We have everything to fill in Android.bp... with open('Android.bp', 'w') as f: print >>f, bp.substitute({ 'export_includes': bpfmt(8, export_includes), 'local_includes': bpfmt(8, local_includes), 'srcs': bpfmt(8, srcs), 'cflags': bpfmt(8, cflags, False), 'cflags_cc': bpfmt(8, cflags_cc), 'arm_srcs': bpfmt(16, defs['armv7']), 'arm_neon_srcs': bpfmt(20, defs['neon']), 'arm64_srcs': bpfmt(16, defs['arm64'] + defs['crc32']), 'none_srcs': bpfmt(16, defs['none']), 'x86_srcs': bpfmt(16, defs['sse2'] + defs['ssse3'] + defs['sse41'] + defs['sse42'] + defs['avx' ] + defs['hsw' ]), 'dm_includes' : bpfmt(8, dm_includes), 'dm_srcs' : bpfmt(8, dm_srcs), 'nanobench_includes' : bpfmt(8, nanobench_includes), 'nanobench_srcs' : bpfmt(8, nanobench_srcs), })
python/ray/autoscaler/tags.py
firebolt55439/ray
21,382
486
"""The Ray autoscaler uses tags/labels to associate metadata with instances.""" # Tag for the name of the node TAG_RAY_NODE_NAME = "ray-node-name" # Tag for the kind of node (e.g. Head, Worker). For legacy reasons, the tag # value says 'type' instead of 'kind'. TAG_RAY_NODE_KIND = "ray-node-type" NODE_KIND_HEAD = "head" NODE_KIND_WORKER = "worker" NODE_KIND_UNMANAGED = "unmanaged" # Tag for user defined node types (e.g., m4xl_spot). This is used for multi # node type clusters. TAG_RAY_USER_NODE_TYPE = "ray-user-node-type" # Tag for autofilled node types for legacy cluster yamls without multi # node type defined in the cluster configs. NODE_TYPE_LEGACY_HEAD = "ray-legacy-head-node-type" NODE_TYPE_LEGACY_WORKER = "ray-legacy-worker-node-type" # Tag that reports the current state of the node (e.g. Updating, Up-to-date) TAG_RAY_NODE_STATUS = "ray-node-status" STATUS_UNINITIALIZED = "uninitialized" STATUS_WAITING_FOR_SSH = "waiting-for-ssh" STATUS_SYNCING_FILES = "syncing-files" STATUS_SETTING_UP = "setting-up" STATUS_UPDATE_FAILED = "update-failed" STATUS_UP_TO_DATE = "up-to-date" # Tag uniquely identifying all nodes of a cluster TAG_RAY_CLUSTER_NAME = "ray-cluster-name" # Hash of the node launch config, used to identify out-of-date nodes TAG_RAY_LAUNCH_CONFIG = "ray-launch-config" # Hash of the node runtime config, used to determine if updates are needed TAG_RAY_RUNTIME_CONFIG = "ray-runtime-config" # Hash of the contents of the directories specified by the file_mounts config # if the node is a worker, this also hashes content of the directories # specified by the cluster_synced_files config TAG_RAY_FILE_MOUNTS_CONTENTS = "ray-file-mounts-contents"

Dataset Card for "starcoderdata_100star_py"

More Information needed

Downloads last month
74