The dataset viewer is not available for this split.
Error code: FeaturesError Exception: ArrowTypeError Message: ("Expected bytes, got a 'list' object", 'Conversion failed for column 0 with type object') Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 130, in _generate_tables pa_table = paj.read_json( File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to string in row 0 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 231, in compute_first_rows_from_streaming_response iterable_dataset = iterable_dataset._resolve_features() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2643, in _resolve_features features = _infer_features_from_batch(self.with_format(None)._head()) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1659, in _head return _examples_to_batch(list(self.take(n))) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1816, in __iter__ for key, example in ex_iterable: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1347, in __iter__ for key_example in islice(self.ex_iterable, self.n - ex_iterable_num_taken): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 318, in __iter__ for key, pa_table in self.generate_tables_fn(**gen_kwags): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 160, in _generate_tables pa_table = pa.Table.from_pandas(df, preserve_index=False) File "pyarrow/table.pxi", line 3874, in pyarrow.lib.Table.from_pandas File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/pandas_compat.py", line 611, in dataframe_to_arrays arrays = [convert_column(c, f) File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/pandas_compat.py", line 611, in <listcomp> arrays = [convert_column(c, f) File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/pandas_compat.py", line 598, in convert_column raise e File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/pandas_compat.py", line 592, in convert_column result = pa.array(col, type=type_, from_pandas=True, safe=safe) File "pyarrow/array.pxi", line 339, in pyarrow.lib.array File "pyarrow/array.pxi", line 85, in pyarrow.lib._ndarray_to_array File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowTypeError: ("Expected bytes, got a 'list' object", 'Conversion failed for column 0 with type object')
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Dataset for MixEval
MixEval is a A dynamic benchmark evaluating LLMs using real-world user queries and benchmarks, achieving a 0.96 model ranking correlation with Chatbot Arena and costs around $0.6 to run using GPT-3.5 as a Judge.
You can find more information and access the MixEval leaderboard here.
This is a fork of the original MixEval repository. The original repository can be found here. I created this fork to make the integration and use of MixEval easier during the training of new models. This Fork includes several improved feature to make usages easier and more flexible. Including:
- Evaluation of Local Models during or post trainig with
transformers
- Hugging Face Datasets integration to avoid the need of local files.
- Use of Hugging Face TGI or vLLM to accelerate evaluation and making it more manageable
- Improved markdown outputs and timing for the training
- Fixed pip install for remote or CI Integration.
Getting started
# Fork with more losely dependencies
pip install git+https://github.com/philschmid/MixEval --upgrade
Note: If you want to evaluate models that are not included Take a look here. Zephyr example here.
Evaluation open LLMs
Remote Hugging Face model with existing config:
# MODEL_PARSER_API=<your openai api key
MODEL_PARSER_API=$(echo $OPENAI_API_KEY) python -m mix_eval.evaluate \
--data_path hf://zeitgeist-ai/mixeval \
--model_name zephyr_7b_beta \
--benchmark mixeval_hard \
--version 2024-06-01 \
--batch_size 20 \
--output_dir results \
--api_parallel_num 20
Using vLLM/TGI with hosted or local API:
- start you environment
python -m vllm.entrypoints.openai.api_server --model alignment-handbook/zephyr-7b-dpo-full
- run the following command
MODEL_PARSER_API=$(echo $OPENAI_API_KEY) API_URL=http://localhost:8000/v1 python -m mix_eval.evaluate \
--data_path hf://zeitgeist-ai/mixeval \
--model_name local_api \
--model_path alignment-handbook/zephyr-7b-dpo-full \
--benchmark mixeval_hard \
--version 2024-06-01 \
--batch_size 20 \
--output_dir results \
--api_parallel_num 20
- Results
| Metric | Score |
|--------|-------|
| MBPP | 100.00% |
| OpenBookQA | 62.50% |
| DROP | 47.60% |
| BBH | 43.10% |
| MATH | 38.10% |
| PIQA | 37.50% |
| TriviaQA | 37.30% |
| BoolQ | 35.10% |
| CommonsenseQA | 34.00% |
| GSM8k | 33.60% |
| MMLU | 29.00% |
| HellaSwag | 27.90% |
| AGIEval | 26.80% |
| GPQA | 0.00% |
| ARC | 0.00% |
| SIQA | 0.00% |
| overall score (final score) | 34.85% |
Total time: 398.0534451007843
Takes around 5 minutes to evaluate.
Local Hugging Face model from path:
# MODEL_PARSER_API=<your openai api key>
MODEL_PARSER_API=$(echo $OPENAI_API_KEY) python -m mix_eval.evaluate \
--data_path hf://zeitgeist-ai/mixeval \
--model_path my/local/path \
--output_dir results/agi-5 \
--model_name local_chat \
--benchmark mixeval_hard \
--version 2024-06-01 \
--batch_size 20 \
--api_parallel_num 20
Remote Hugging Face model without config and defaults
Note: We use the model name local_chat
to avoid the need for a config file and load it from the Hugging Face model hub.
# MODEL_PARSER_API=<your openai api key>
MODEL_PARSER_API=$(echo $OPENAI_API_KEY) python -m mix_eval.evaluate \
--data_path hf://zeitgeist-ai/mixeval \
--model_path alignment-handbook/zephyr-7b-sft-full \
--output_dir results/handbook-zephyr \
--model_name local_chat \
--benchmark mixeval_hard \
--version 2024-06-01 \
--batch_size 20 \
--api_parallel_num 20
- Downloads last month
- 30