Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
10K - 100K
License:
File size: 6,971 Bytes
198356e fb76f3e 198356e de9625c fb76f3e de9625c fb76f3e 198356e fb76f3e 198356e 9db589a 910a055 d02be4f 6c5fed1 77f3279 6c5fed1 dd6e9ac 6c5fed1 77f3279 6c5fed1 7737340 77f3279 7737340 77f3279 198356e 910a055 198356e 910a055 198356e 8ab08c1 198356e fb76f3e 198356e 51233d0 198356e 51233d0 198356e fb76f3e 198356e 8ab08c1 6c5fed1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- mit
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-nist
task_categories:
- image-classification
task_ids:
- multi-class-image-classification
paperswithcode_id: mnist
pretty_name: MNIST
dataset_info:
config_name: mnist
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': '0'
'1': '1'
'2': '2'
'3': '3'
'4': '4'
'5': '5'
'6': '6'
'7': '7'
'8': '8'
'9': '9'
splits:
- name: train
num_bytes: 17223300.0
num_examples: 60000
- name: test
num_bytes: 2875182.0
num_examples: 10000
download_size: 18157506
dataset_size: 20098482.0
configs:
- config_name: mnist
data_files:
- split: train
path: mnist/train-*
- split: test
path: mnist/test-*
default: true
---
# Dataset Card for MNIST
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** http://yann.lecun.com/exdb/mnist/
- **Repository:**
- **Paper:** MNIST handwritten digit database by Yann LeCun, Corinna Cortes, and CJ Burges
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The MNIST dataset consists of 70,000 28x28 black-and-white images of handwritten digits extracted from two NIST databases. There are 60,000 images in the training dataset and 10,000 images in the validation dataset, one class per digit so a total of 10 classes, with 7,000 images (6,000 train images and 1,000 test images) per class.
Half of the image were drawn by Census Bureau employees and the other half by high school students (this split is evenly distributed in the training and testing sets).
### Supported Tasks and Leaderboards
- `image-classification`: The goal of this task is to classify a given image of a handwritten digit into one of 10 classes representing integer values from 0 to 9, inclusively. The leaderboard is available [here](https://paperswithcode.com/sota/image-classification-on-mnist).
### Languages
English
## Dataset Structure
### Data Instances
A data point comprises an image and its label:
```
{
'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=28x28 at 0x276021F6DD8>,
'label': 5
}
```
### Data Fields
- `image`: A `PIL.Image.Image` object containing the 28x28 image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]`
- `label`: an integer between 0 and 9 representing the digit.
### Data Splits
The data is split into training and test set. All the images in the test set were drawn by different individuals than the images in the training set. The training set contains 60,000 images and the test set 10,000 images.
## Dataset Creation
### Curation Rationale
The MNIST database was created to provide a testbed for people wanting to try pattern recognition methods or machine learning algorithms while spending minimal efforts on preprocessing and formatting. Images of the original dataset (NIST) were in two groups, one consisting of images drawn by Census Bureau employees and one consisting of images drawn by high school students. In NIST, the training set was built by grouping all the images of the Census Bureau employees, and the test set was built by grouping the images form the high school students.
The goal in building MNIST was to have a training and test set following the same distributions, so the training set contains 30,000 images drawn by Census Bureau employees and 30,000 images drawn by high school students, and the test set contains 5,000 images of each group. The curators took care to make sure all the images in the test set were drawn by different individuals than the images in the training set.
### Source Data
#### Initial Data Collection and Normalization
The original images from NIST were size normalized to fit a 20x20 pixel box while preserving their aspect ratio. The resulting images contain grey levels (i.e., pixels don't simply have a value of black and white, but a level of greyness from 0 to 255) as a result of the anti-aliasing technique used by the normalization algorithm. The images were then centered in a 28x28 image by computing the center of mass of the pixels, and translating the image so as to position this point at the center of the 28x28 field.
#### Who are the source language producers?
Half of the source images were drawn by Census Bureau employees, half by high school students. According to the dataset curator, the images from the first group are more easily recognizable.
### Annotations
#### Annotation process
The images were not annotated after their creation: the image creators annotated their images with the corresponding label after drawing them.
#### Who are the annotators?
Same as the source data creators.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Chris Burges, Corinna Cortes and Yann LeCun
### Licensing Information
MIT Licence
### Citation Information
```
@article{lecun2010mnist,
title={MNIST handwritten digit database},
author={LeCun, Yann and Cortes, Corinna and Burges, CJ},
journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},
volume={2},
year={2010}
}
```
### Contributions
Thanks to [@sgugger](https://github.com/sgugger) for adding this dataset. |