Dataset Viewer
Auto-converted to Parquet
url
stringlengths
61
61
repository_url
stringclasses
1 value
labels_url
stringlengths
75
75
comments_url
stringlengths
70
70
events_url
stringlengths
68
68
html_url
stringlengths
49
51
id
int64
1.18B
1.77B
node_id
stringlengths
18
19
number
int64
4.02k
5.97k
title
stringlengths
1
290
user
dict
labels
list
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
list
milestone
dict
comments
sequence
created_at
timestamp[s]
updated_at
timestamp[s]
closed_at
timestamp[s]
author_association
stringclasses
3 values
active_lock_reason
null
body
stringlengths
2
33.9k
reactions
dict
timeline_url
stringlengths
70
70
performed_via_github_app
null
state_reason
stringclasses
3 values
draft
bool
2 classes
pull_request
dict
is_pull_request
bool
2 classes
https://api.github.com/repos/huggingface/datasets/issues/5970
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5970/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5970/comments
https://api.github.com/repos/huggingface/datasets/issues/5970/events
https://github.com/huggingface/datasets/issues/5970
1,766,010,356
I_kwDODunzps5pQy30
5,970
description disappearing from Info when Uploading a Dataset Created with `from_dict`
{ "login": "balisujohn", "id": 20377292, "node_id": "MDQ6VXNlcjIwMzc3Mjky", "avatar_url": "https://avatars.githubusercontent.com/u/20377292?v=4", "gravatar_id": "", "url": "https://api.github.com/users/balisujohn", "html_url": "https://github.com/balisujohn", "followers_url": "https://api.github.com/users/balisujohn/followers", "following_url": "https://api.github.com/users/balisujohn/following{/other_user}", "gists_url": "https://api.github.com/users/balisujohn/gists{/gist_id}", "starred_url": "https://api.github.com/users/balisujohn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/balisujohn/subscriptions", "organizations_url": "https://api.github.com/users/balisujohn/orgs", "repos_url": "https://api.github.com/users/balisujohn/repos", "events_url": "https://api.github.com/users/balisujohn/events{/privacy}", "received_events_url": "https://api.github.com/users/balisujohn/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2023-06-20T19:18:26
2023-06-20T19:57:57
null
NONE
null
### Describe the bug When uploading a dataset created locally using `from_dict` with a specified `description` field. It appears before upload, but is missing after upload and re-download. ### Steps to reproduce the bug I think the most relevant pattern in the code might be the following lines: ``` description_json_str = json.dumps( { "dataset_id": dataset.spec.dataset_id, "env_name": dataset.spec.env_spec.id, "action_space": serialize_space(dataset.spec.action_space), "observation_space": serialize_space(dataset.spec.observation_space), } ) hugging_face_dataset = Dataset.from_dict( episodes_dict, info=DatasetInfo(description=description_json_str) ) ``` Which comes from this function https://github.com/balisujohn/minarai/blob/8e023727f0a8488c4451651d9f7a79b981412c40/minari/integrations/hugging_face.py#L39 To replicate, clone this branch of my Minari fork https://github.com/balisujohn/minarai/tree/dev-huggingface then run ``` python3.8 -m venv env source env/bin/activate python3 -m pip install -e . python3 -m pip install pytest ``` The change the hugging face repo path in the test called `test_hugging_face_push_and_pull_dataset` in `tests/integrations/test_hugging_face.py` to one you have permissions to write to. Then run: ``` pytest tests/integrations/test_hugging_face.py::test_hugging_face_push_and_pull_dataset ``` ### Expected behavior DATASET INFO BEFORE UPLOADING DatasetInfo(description='{"dataset_id": "dummy-combo-test-v0", "env_name": "DummyComboEnv-v0", "action_space": "{\\"type\\": \\"Tuple\\", \\"subspaces\\": [{\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [2.0], \\"high\\": [3.0]}, {\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [4.0], \\"high\\": [5.0]}]}", "observation_space": "{\\"type\\": \\"Tuple\\", \\"subspaces\\": [{\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [2.0], \\"high\\": [3.0]}, {\\"type\\": \\"Tuple\\", \\"subspaces\\": [{\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [2.0], \\"high\\": [3.0]}, {\\"type\\": \\"Dict\\", \\"subspaces\\": {\\"component_1\\": {\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [-1.0], \\"high\\": [1.0]}, \\"component_2\\": {\\"type\\": \\"Dict\\", \\"subspaces\\": {\\"subcomponent_1\\": {\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [2.0], \\"high\\": [3.0]}, \\"subcomponent_2\\": {\\"type\\": \\"Tuple\\", \\"subspaces\\": [{\\"type\\": \\"Box\\", \\"dtype\\": \\"float32\\", \\"shape\\": [1], \\"low\\": [4.0], \\"high\\": [5.0]}, {\\"type\\": \\"Discrete\\", \\"dtype\\": \\"int64\\", \\"start\\": 0, \\"n\\": 10}]}}}}}]}]}"}', citation='', homepage='', license='', features={'observations': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': {'component_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), 'component_2': {'subcomponent_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), 'subcomponent_2': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': Value(dtype='int64', id=None)}}}}}, 'actions': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None)}, 'rewards': Value(dtype='int64', id=None), 'truncations': Value(dtype='bool', id=None), 'terminations': Value(dtype='bool', id=None), 'episode_ids': Value(dtype='int64', id=None)}, post_processed=None, supervised_keys=None, task_templates=None, builder_name=None, config_name=None, version=None, splits=None, download_checksums=None, download_size=None, post_processing_size=None, dataset_size=None, size_in_bytes=None) ... DATASET INFO AFTER UPLOADING AND DOWNLOADING DatasetInfo(description='', citation='', homepage='', license='', features={'observations': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': {'component_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), 'component_2': {'subcomponent_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), 'subcomponent_2': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': Value(dtype='int64', id=None)}}}}}, 'actions': {'_index_0': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None), '_index_1': Sequence(feature=Value(dtype='float32', id=None), length=-1, id=None)}, 'rewards': Value(dtype='int64', id=None), 'truncations': Value(dtype='bool', id=None), 'terminations': Value(dtype='bool', id=None), 'episode_ids': Value(dtype='int64', id=None)}, post_processed=None, supervised_keys=None, task_templates=None, builder_name=None, config_name=None, version=None, splits={'train': SplitInfo(name='train', num_bytes=4846, num_examples=60, shard_lengths=None, dataset_name='parquet')}, download_checksums={'https://huggingface.co/datasets/balisujohn/minari_test/resolve/8217b614ff9ba5edc1a30c7df430e92a46f65363/data/train-00000-of-00001-7c5900b93b35745e.parquet': {'num_bytes': 9052, 'checksum': None}}, download_size=9052, post_processing_size=None, dataset_size=4846, size_in_bytes=13898) ... ### Environment info - `datasets` version: 2.13.0 - Platform: Linux-5.15.0-75-generic-x86_64-with-glibc2.29 - Python version: 3.8.10 - Huggingface_hub version: 0.15.1 - PyArrow version: 12.0.1 - Pandas version: 2.0.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5970/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5970/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5969
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5969/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5969/comments
https://api.github.com/repos/huggingface/datasets/issues/5969/events
https://github.com/huggingface/datasets/pull/5969
1,765,529,905
PR_kwDODunzps5Tcgq4
5,969
Add `encoding` and `errors` params to JSON loader
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5969). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006770 / 0.011353 (-0.004583) | 0.004143 / 0.011008 (-0.006865) | 0.098928 / 0.038508 (0.060420) | 0.044893 / 0.023109 (0.021783) | 0.302630 / 0.275898 (0.026732) | 0.368173 / 0.323480 (0.044693) | 0.005631 / 0.007986 (-0.002354) | 0.003397 / 0.004328 (-0.000931) | 0.075748 / 0.004250 (0.071497) | 0.062582 / 0.037052 (0.025530) | 0.329586 / 0.258489 (0.071097) | 0.362625 / 0.293841 (0.068784) | 0.033250 / 0.128546 (-0.095296) | 0.008880 / 0.075646 (-0.066766) | 0.329683 / 0.419271 (-0.089588) | 0.054426 / 0.043533 (0.010893) | 0.297940 / 0.255139 (0.042801) | 0.319796 / 0.283200 (0.036597) | 0.023296 / 0.141683 (-0.118387) | 1.462142 / 1.452155 (0.009987) | 1.495796 / 1.492716 (0.003079) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201771 / 0.018006 (0.183765) | 0.454514 / 0.000490 (0.454024) | 0.003333 / 0.000200 (0.003133) | 0.000081 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028084 / 0.037411 (-0.009327) | 0.109452 / 0.014526 (0.094926) | 0.119200 / 0.176557 (-0.057357) | 0.180302 / 0.737135 (-0.556834) | 0.125653 / 0.296338 (-0.170686) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.409819 / 0.215209 (0.194610) | 4.055117 / 2.077655 (1.977462) | 1.855279 / 1.504120 (0.351159) | 1.655281 / 1.541195 (0.114086) | 1.687938 / 1.468490 (0.219448) | 0.528352 / 4.584777 (-4.056425) | 3.750250 / 3.745712 (0.004538) | 3.386741 / 5.269862 (-1.883121) | 1.572036 / 4.565676 (-2.993640) | 0.065125 / 0.424275 (-0.359150) | 0.011259 / 0.007607 (0.003652) | 0.513449 / 0.226044 (0.287405) | 5.139421 / 2.268929 (2.870492) | 2.316973 / 55.444624 (-53.127651) | 1.984109 / 6.876477 (-4.892368) | 2.127915 / 2.142072 (-0.014158) | 0.653238 / 4.805227 (-4.151989) | 0.142686 / 6.500664 (-6.357978) | 0.063666 / 0.075469 (-0.011803) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.185174 / 1.841788 (-0.656614) | 14.790282 / 8.074308 (6.715974) | 13.089222 / 10.191392 (2.897830) | 0.146055 / 0.680424 (-0.534369) | 0.017835 / 0.534201 (-0.516366) | 0.399598 / 0.579283 (-0.179685) | 0.425296 / 0.434364 (-0.009068) | 0.478552 / 0.540337 (-0.061786) | 0.579702 / 1.386936 (-0.807234) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006750 / 0.011353 (-0.004603) | 0.004156 / 0.011008 (-0.006853) | 0.074948 / 0.038508 (0.036440) | 0.043368 / 0.023109 (0.020259) | 0.355389 / 0.275898 (0.079491) | 0.429167 / 0.323480 (0.105687) | 0.003911 / 0.007986 (-0.004075) | 0.004340 / 0.004328 (0.000012) | 0.075940 / 0.004250 (0.071689) | 0.054293 / 0.037052 (0.017241) | 0.400317 / 0.258489 (0.141827) | 0.432001 / 0.293841 (0.138160) | 0.032340 / 0.128546 (-0.096206) | 0.008876 / 0.075646 (-0.066770) | 0.082284 / 0.419271 (-0.336987) | 0.050819 / 0.043533 (0.007286) | 0.351994 / 0.255139 (0.096855) | 0.375917 / 0.283200 (0.092717) | 0.022466 / 0.141683 (-0.119217) | 1.538824 / 1.452155 (0.086669) | 1.563995 / 1.492716 (0.071279) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227330 / 0.018006 (0.209323) | 0.446380 / 0.000490 (0.445890) | 0.000408 / 0.000200 (0.000208) | 0.000058 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028534 / 0.037411 (-0.008878) | 0.113467 / 0.014526 (0.098941) | 0.123590 / 0.176557 (-0.052966) | 0.174309 / 0.737135 (-0.562827) | 0.130631 / 0.296338 (-0.165707) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441020 / 0.215209 (0.225811) | 4.386564 / 2.077655 (2.308909) | 2.100704 / 1.504120 (0.596584) | 1.901484 / 1.541195 (0.360289) | 1.963494 / 1.468490 (0.495004) | 0.536838 / 4.584777 (-4.047939) | 3.739071 / 3.745712 (-0.006642) | 3.278981 / 5.269862 (-1.990881) | 1.515476 / 4.565676 (-3.050201) | 0.066388 / 0.424275 (-0.357887) | 0.011857 / 0.007607 (0.004250) | 0.545507 / 0.226044 (0.319463) | 5.441479 / 2.268929 (3.172550) | 2.602144 / 55.444624 (-52.842480) | 2.235583 / 6.876477 (-4.640894) | 2.293458 / 2.142072 (0.151385) | 0.658535 / 4.805227 (-4.146692) | 0.141327 / 6.500664 (-6.359337) | 0.063726 / 0.075469 (-0.011743) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.247819 / 1.841788 (-0.593968) | 15.234524 / 8.074308 (7.160216) | 14.592700 / 10.191392 (4.401308) | 0.141952 / 0.680424 (-0.538472) | 0.017747 / 0.534201 (-0.516454) | 0.396819 / 0.579283 (-0.182465) | 0.415902 / 0.434364 (-0.018462) | 0.464619 / 0.540337 (-0.075718) | 0.560866 / 1.386936 (-0.826070) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4b7f6c59deb868e21f295917548fa2df10dd0158 \"CML watermark\")\n" ]
2023-06-20T14:28:35
2023-06-20T17:33:17
null
CONTRIBUTOR
null
"Requested" in https://discuss.huggingface.co/t/utf-16-for-datasets/43828/3. `pd.read_json` also has these parameters, so it makes sense to be consistent.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5969/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5969/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5969", "html_url": "https://github.com/huggingface/datasets/pull/5969", "diff_url": "https://github.com/huggingface/datasets/pull/5969.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5969.patch", "merged_at": null }
true
https://api.github.com/repos/huggingface/datasets/issues/5968
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5968/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5968/comments
https://api.github.com/repos/huggingface/datasets/issues/5968/events
https://github.com/huggingface/datasets/issues/5968
1,765,252,561
I_kwDODunzps5pN53R
5,968
Common Voice datasets still need `use_auth_token=True`
{ "login": "patrickvonplaten", "id": 23423619, "node_id": "MDQ6VXNlcjIzNDIzNjE5", "avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4", "gravatar_id": "", "url": "https://api.github.com/users/patrickvonplaten", "html_url": "https://github.com/patrickvonplaten", "followers_url": "https://api.github.com/users/patrickvonplaten/followers", "following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}", "gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}", "starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions", "organizations_url": "https://api.github.com/users/patrickvonplaten/orgs", "repos_url": "https://api.github.com/users/patrickvonplaten/repos", "events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}", "received_events_url": "https://api.github.com/users/patrickvonplaten/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "cc @pcuenca as well. \r\n\r\nNot super urgent btw", "The issue commes from the dataset itself and is not related to the `datasets` lib\r\n\r\nsee https://huggingface.co/datasets/mozilla-foundation/common_voice_6_1/blob/2c475b3b88e0f2e5828f830a4b91618a25ff20b7/common_voice_6_1.py#L148-L152" ]
2023-06-20T11:58:37
2023-06-20T12:57:05
null
MEMBER
null
### Describe the bug We don't need to pass `use_auth_token=True` anymore to download gated datasets or models, so the following should work if correctly logged in. ```py from datasets import load_dataset load_dataset("mozilla-foundation/common_voice_6_1", "tr", split="train+validation") ``` However it throws an error - probably because something weird is hardcoded into the dataset loading script. ### Steps to reproduce the bug 1.) ``` huggingface-cli login ``` 2.) Make sure that you have accepted the license here: https://huggingface.co/datasets/mozilla-foundation/common_voice_6_1 3.) Run: ```py from datasets import load_dataset load_dataset("mozilla-foundation/common_voice_6_1", "tr", split="train+validation") ``` 4.) You'll get: ``` File ~/hf/lib/python3.10/site-packages/datasets/builder.py:963, in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs) 961 split_dict = SplitDict(dataset_name=self.name) 962 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) --> 963 split_generators = self._split_generators(dl_manager, **split_generators_kwargs) 965 # Checksums verification 966 if verification_mode == VerificationMode.ALL_CHECKS and dl_manager.record_checksums: File ~/.cache/huggingface/modules/datasets_modules/datasets/mozilla-foundation--common_voice_6_1/f4d7854c466f5bd4908988dbd39044ec4fc634d89e0515ab0c51715c0127ffe3/common_voice_6_1.py:150, in CommonVoice._split_generators(self, dl_manager) 148 hf_auth_token = dl_manager.download_config.use_auth_token 149 if hf_auth_token is None: --> 150 raise ConnectionError( 151 "Please set use_auth_token=True or use_auth_token='<TOKEN>' to download this dataset" 152 ) 154 bundle_url_template = STATS["bundleURLTemplate"] 155 bundle_version = bundle_url_template.split("/")[0] ConnectionError: Please set use_auth_token=True or use_auth_token='<TOKEN>' to download this dataset ``` ### Expected behavior One should not have to pass `use_auth_token=True`. Also see discussion here: https://github.com/huggingface/blog/pull/1243#discussion_r1235131150 ### Environment info ``` - `datasets` version: 2.13.0 - Platform: Linux-6.2.0-76060200-generic-x86_64-with-glibc2.35 - Python version: 3.10.6 - Huggingface_hub version: 0.16.0.dev0 - PyArrow version: 11.0.0 - Pandas version: 1.5.3 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5968/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5968/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5967
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5967/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5967/comments
https://api.github.com/repos/huggingface/datasets/issues/5967/events
https://github.com/huggingface/datasets/issues/5967
1,763,926,520
I_kwDODunzps5pI2H4
5,967
Config name / split name lost after map with multiproc
{ "login": "sanchit-gandhi", "id": 93869735, "node_id": "U_kgDOBZhWpw", "avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sanchit-gandhi", "html_url": "https://github.com/sanchit-gandhi", "followers_url": "https://api.github.com/users/sanchit-gandhi/followers", "following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}", "gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}", "starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions", "organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs", "repos_url": "https://api.github.com/users/sanchit-gandhi/repos", "events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}", "received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2023-06-19T17:27:36
2023-06-19T17:27:36
null
CONTRIBUTOR
null
### Describe the bug Performing a `.map` method on a dataset loses it's config name / split name only if run with multiproc ### Steps to reproduce the bug ```python from datasets import Audio, load_dataset from transformers import AutoFeatureExtractor import numpy as np # load dummy dataset libri = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean") # make train / test splits libri = libri["validation"].train_test_split(seed=42, shuffle=True, test_size=0.1) # example feature extractor model_id = "ntu-spml/distilhubert" feature_extractor = AutoFeatureExtractor.from_pretrained(model_id, do_normalize=True, return_attention_mask=True) sampling_rate = feature_extractor.sampling_rate libri = libri.cast_column("audio", Audio(sampling_rate=sampling_rate)) max_duration = 30.0 def preprocess_function(examples): audio_arrays = [x["array"] for x in examples["audio"]] inputs = feature_extractor( audio_arrays, sampling_rate=feature_extractor.sampling_rate, max_length=int(feature_extractor.sampling_rate * max_duration), truncation=True, return_attention_mask=True, ) return inputs # single proc map libri_encoded = libri.map( preprocess_function, remove_columns=["audio", "file"], batched=True, num_proc=1 ) print(10 * "=" ,"Single processing", 10 * "=") print("Config name before: ", libri["train"].config_name, " Split name before: ", libri["train"].split) print("Config name after: ", libri_encoded["train"].config_name, " Split name after: ", libri_encoded["train"].split) # multi proc map libri_encoded = libri.map( preprocess_function, remove_columns=["audio", "file"], batched=True, num_proc=2 ) print(10 * "=" ,"Multi processing", 10 * "=") print("Config name before: ", libri["train"].config_name, " Split name before: ", libri["train"].split) print("Config name after: ", libri_encoded["train"].config_name, " Split name after: ", libri_encoded["train"].split) ``` **Print Output:** ``` ========== Single processing ========== Config name before: clean Split name before: validation Config name after: clean Split name after: validation ========== Multi processing ========== Config name before: clean Split name before: validation Config name after: None Split name after: None ``` => we can see that the config/split names are lost in the multiprocessing setting ### Expected behavior Should retain both config / split names in the multiproc setting ### Environment info - `datasets` version: 2.13.1.dev0 - Platform: Linux-5.15.0-67-generic-x86_64-with-glibc2.35 - Python version: 3.10.6 - Huggingface_hub version: 0.15.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5967/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5967/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5966
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5966/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5966/comments
https://api.github.com/repos/huggingface/datasets/issues/5966/events
https://github.com/huggingface/datasets/pull/5966
1,763,885,914
PR_kwDODunzps5TXBLP
5,966
Fix JSON generation in benchmarks CI
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006186 / 0.011353 (-0.005167) | 0.003744 / 0.011008 (-0.007264) | 0.097295 / 0.038508 (0.058787) | 0.037106 / 0.023109 (0.013997) | 0.424154 / 0.275898 (0.148256) | 0.474536 / 0.323480 (0.151057) | 0.003454 / 0.007986 (-0.004532) | 0.003865 / 0.004328 (-0.000463) | 0.077348 / 0.004250 (0.073097) | 0.051728 / 0.037052 (0.014675) | 0.437120 / 0.258489 (0.178631) | 0.478379 / 0.293841 (0.184538) | 0.028939 / 0.128546 (-0.099608) | 0.008376 / 0.075646 (-0.067270) | 0.312002 / 0.419271 (-0.107270) | 0.053723 / 0.043533 (0.010190) | 0.424815 / 0.255139 (0.169676) | 0.446203 / 0.283200 (0.163004) | 0.026553 / 0.141683 (-0.115130) | 1.479983 / 1.452155 (0.027828) | 1.530613 / 1.492716 (0.037896) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.196627 / 0.018006 (0.178620) | 0.422361 / 0.000490 (0.421871) | 0.003442 / 0.000200 (0.003242) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022913 / 0.037411 (-0.014499) | 0.096011 / 0.014526 (0.081485) | 0.104091 / 0.176557 (-0.072466) | 0.163273 / 0.737135 (-0.573862) | 0.109142 / 0.296338 (-0.187197) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431032 / 0.215209 (0.215823) | 4.314391 / 2.077655 (2.236737) | 2.003812 / 1.504120 (0.499692) | 1.799538 / 1.541195 (0.258344) | 1.830026 / 1.468490 (0.361536) | 0.560131 / 4.584777 (-4.024646) | 3.368997 / 3.745712 (-0.376715) | 1.703032 / 5.269862 (-3.566830) | 1.026949 / 4.565676 (-3.538727) | 0.067507 / 0.424275 (-0.356768) | 0.010910 / 0.007607 (0.003303) | 0.532606 / 0.226044 (0.306562) | 5.345179 / 2.268929 (3.076250) | 2.368077 / 55.444624 (-53.076548) | 2.028913 / 6.876477 (-4.847564) | 2.147621 / 2.142072 (0.005549) | 0.675696 / 4.805227 (-4.129531) | 0.134902 / 6.500664 (-6.365762) | 0.065004 / 0.075469 (-0.010465) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.233412 / 1.841788 (-0.608376) | 13.767465 / 8.074308 (5.693157) | 13.933653 / 10.191392 (3.742261) | 0.129010 / 0.680424 (-0.551414) | 0.016708 / 0.534201 (-0.517493) | 0.362341 / 0.579283 (-0.216942) | 0.390902 / 0.434364 (-0.043462) | 0.429156 / 0.540337 (-0.111182) | 0.521166 / 1.386936 (-0.865770) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006169 / 0.011353 (-0.005184) | 0.003839 / 0.011008 (-0.007169) | 0.078784 / 0.038508 (0.040276) | 0.040218 / 0.023109 (0.017109) | 0.360439 / 0.275898 (0.084541) | 0.423957 / 0.323480 (0.100477) | 0.003456 / 0.007986 (-0.004529) | 0.002900 / 0.004328 (-0.001428) | 0.078820 / 0.004250 (0.074569) | 0.047240 / 0.037052 (0.010187) | 0.372081 / 0.258489 (0.113592) | 0.424263 / 0.293841 (0.130422) | 0.027977 / 0.128546 (-0.100569) | 0.008400 / 0.075646 (-0.067246) | 0.084399 / 0.419271 (-0.334872) | 0.043303 / 0.043533 (-0.000230) | 0.361583 / 0.255139 (0.106444) | 0.394987 / 0.283200 (0.111787) | 0.020006 / 0.141683 (-0.121677) | 1.520208 / 1.452155 (0.068053) | 1.587335 / 1.492716 (0.094619) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223847 / 0.018006 (0.205840) | 0.402194 / 0.000490 (0.401704) | 0.000384 / 0.000200 (0.000184) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024902 / 0.037411 (-0.012509) | 0.099076 / 0.014526 (0.084550) | 0.108041 / 0.176557 (-0.068516) | 0.159385 / 0.737135 (-0.577750) | 0.111442 / 0.296338 (-0.184896) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.446232 / 0.215209 (0.231023) | 4.464927 / 2.077655 (2.387272) | 2.155234 / 1.504120 (0.651114) | 1.953645 / 1.541195 (0.412450) | 1.965991 / 1.468490 (0.497501) | 0.553473 / 4.584777 (-4.031304) | 3.321397 / 3.745712 (-0.424315) | 1.693761 / 5.269862 (-3.576101) | 1.006299 / 4.565676 (-3.559378) | 0.067013 / 0.424275 (-0.357262) | 0.011116 / 0.007607 (0.003509) | 0.555014 / 0.226044 (0.328970) | 5.535694 / 2.268929 (3.266765) | 2.598339 / 55.444624 (-52.846285) | 2.249298 / 6.876477 (-4.627179) | 2.243419 / 2.142072 (0.101347) | 0.667603 / 4.805227 (-4.137624) | 0.133322 / 6.500664 (-6.367343) | 0.065473 / 0.075469 (-0.009996) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.293051 / 1.841788 (-0.548737) | 14.103731 / 8.074308 (6.029423) | 14.215204 / 10.191392 (4.023812) | 0.143990 / 0.680424 (-0.536434) | 0.016805 / 0.534201 (-0.517396) | 0.363264 / 0.579283 (-0.216019) | 0.392769 / 0.434364 (-0.041594) | 0.425291 / 0.540337 (-0.115046) | 0.515479 / 1.386936 (-0.871457) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e03a58f3f5d7e6f07279fb833e62d859a0babaad \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006346 / 0.011353 (-0.005006) | 0.004130 / 0.011008 (-0.006878) | 0.096898 / 0.038508 (0.058390) | 0.042564 / 0.023109 (0.019455) | 0.343748 / 0.275898 (0.067850) | 0.412515 / 0.323480 (0.089035) | 0.006153 / 0.007986 (-0.001833) | 0.003345 / 0.004328 (-0.000984) | 0.075314 / 0.004250 (0.071064) | 0.061478 / 0.037052 (0.024426) | 0.362948 / 0.258489 (0.104459) | 0.401533 / 0.293841 (0.107692) | 0.032363 / 0.128546 (-0.096184) | 0.008780 / 0.075646 (-0.066867) | 0.328691 / 0.419271 (-0.090580) | 0.054253 / 0.043533 (0.010721) | 0.340783 / 0.255139 (0.085644) | 0.360705 / 0.283200 (0.077505) | 0.023183 / 0.141683 (-0.118500) | 1.484078 / 1.452155 (0.031924) | 1.528581 / 1.492716 (0.035865) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208732 / 0.018006 (0.190726) | 0.452572 / 0.000490 (0.452082) | 0.002936 / 0.000200 (0.002737) | 0.000082 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024616 / 0.037411 (-0.012795) | 0.107547 / 0.014526 (0.093021) | 0.114492 / 0.176557 (-0.062065) | 0.171770 / 0.737135 (-0.565365) | 0.122538 / 0.296338 (-0.173800) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.406140 / 0.215209 (0.190930) | 4.062391 / 2.077655 (1.984736) | 1.865962 / 1.504120 (0.361842) | 1.682236 / 1.541195 (0.141041) | 1.738119 / 1.468490 (0.269629) | 0.532244 / 4.584777 (-4.052533) | 3.816421 / 3.745712 (0.070709) | 2.981205 / 5.269862 (-2.288656) | 1.519497 / 4.565676 (-3.046179) | 0.065904 / 0.424275 (-0.358371) | 0.011277 / 0.007607 (0.003670) | 0.512789 / 0.226044 (0.286745) | 5.107618 / 2.268929 (2.838690) | 2.419399 / 55.444624 (-53.025226) | 2.079262 / 6.876477 (-4.797214) | 2.150447 / 2.142072 (0.008375) | 0.696737 / 4.805227 (-4.108490) | 0.142497 / 6.500664 (-6.358167) | 0.063521 / 0.075469 (-0.011949) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.180692 / 1.841788 (-0.661095) | 14.343084 / 8.074308 (6.268776) | 13.303719 / 10.191392 (3.112327) | 0.164234 / 0.680424 (-0.516190) | 0.017439 / 0.534201 (-0.516762) | 0.399712 / 0.579283 (-0.179571) | 0.428248 / 0.434364 (-0.006115) | 0.471909 / 0.540337 (-0.068428) | 0.573853 / 1.386936 (-0.813083) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006210 / 0.011353 (-0.005143) | 0.004104 / 0.011008 (-0.006905) | 0.075140 / 0.038508 (0.036632) | 0.044647 / 0.023109 (0.021538) | 0.370120 / 0.275898 (0.094222) | 0.452936 / 0.323480 (0.129457) | 0.003943 / 0.007986 (-0.004042) | 0.003285 / 0.004328 (-0.001043) | 0.075267 / 0.004250 (0.071017) | 0.055517 / 0.037052 (0.018465) | 0.396385 / 0.258489 (0.137896) | 0.447870 / 0.293841 (0.154029) | 0.031342 / 0.128546 (-0.097204) | 0.008720 / 0.075646 (-0.066926) | 0.082702 / 0.419271 (-0.336570) | 0.051010 / 0.043533 (0.007477) | 0.350546 / 0.255139 (0.095407) | 0.425395 / 0.283200 (0.142195) | 0.024483 / 0.141683 (-0.117200) | 1.467341 / 1.452155 (0.015186) | 1.537187 / 1.492716 (0.044471) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218067 / 0.018006 (0.200061) | 0.441603 / 0.000490 (0.441114) | 0.003711 / 0.000200 (0.003512) | 0.000092 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028669 / 0.037411 (-0.008742) | 0.112941 / 0.014526 (0.098415) | 0.122584 / 0.176557 (-0.053972) | 0.176494 / 0.737135 (-0.560641) | 0.129369 / 0.296338 (-0.166970) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434543 / 0.215209 (0.219334) | 4.344056 / 2.077655 (2.266401) | 2.079286 / 1.504120 (0.575166) | 1.887264 / 1.541195 (0.346069) | 1.910386 / 1.468490 (0.441896) | 0.538824 / 4.584777 (-4.045953) | 3.844786 / 3.745712 (0.099074) | 2.902091 / 5.269862 (-2.367770) | 1.270852 / 4.565676 (-3.294824) | 0.066324 / 0.424275 (-0.357951) | 0.011346 / 0.007607 (0.003739) | 0.537122 / 0.226044 (0.311078) | 5.367354 / 2.268929 (3.098426) | 2.533672 / 55.444624 (-52.910952) | 2.203260 / 6.876477 (-4.673217) | 2.224310 / 2.142072 (0.082237) | 0.663806 / 4.805227 (-4.141422) | 0.142758 / 6.500664 (-6.357906) | 0.063870 / 0.075469 (-0.011599) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.260487 / 1.841788 (-0.581301) | 14.800106 / 8.074308 (6.725798) | 13.993488 / 10.191392 (3.802096) | 0.165829 / 0.680424 (-0.514595) | 0.017347 / 0.534201 (-0.516854) | 0.401819 / 0.579283 (-0.177464) | 0.424577 / 0.434364 (-0.009787) | 0.475161 / 0.540337 (-0.065176) | 0.574659 / 1.386936 (-0.812277) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#02e1e9ab6df4720f57b2d08c0b800cecac79a7c8 \"CML watermark\")\n" ]
2023-06-19T16:56:06
2023-06-19T17:29:11
2023-06-19T17:22:10
CONTRIBUTOR
null
Related to changes made in https://github.com/iterative/dvc/pull/9475
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5966/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5966/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5966", "html_url": "https://github.com/huggingface/datasets/pull/5966", "diff_url": "https://github.com/huggingface/datasets/pull/5966.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5966.patch", "merged_at": "2023-06-19T17:22:10" }
true
https://api.github.com/repos/huggingface/datasets/issues/5965
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5965/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5965/comments
https://api.github.com/repos/huggingface/datasets/issues/5965/events
https://github.com/huggingface/datasets/issues/5965
1,763,648,540
I_kwDODunzps5pHyQc
5,965
"Couldn't cast array of type" in complex datasets
{ "login": "piercefreeman", "id": 1712066, "node_id": "MDQ6VXNlcjE3MTIwNjY=", "avatar_url": "https://avatars.githubusercontent.com/u/1712066?v=4", "gravatar_id": "", "url": "https://api.github.com/users/piercefreeman", "html_url": "https://github.com/piercefreeman", "followers_url": "https://api.github.com/users/piercefreeman/followers", "following_url": "https://api.github.com/users/piercefreeman/following{/other_user}", "gists_url": "https://api.github.com/users/piercefreeman/gists{/gist_id}", "starred_url": "https://api.github.com/users/piercefreeman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/piercefreeman/subscriptions", "organizations_url": "https://api.github.com/users/piercefreeman/orgs", "repos_url": "https://api.github.com/users/piercefreeman/repos", "events_url": "https://api.github.com/users/piercefreeman/events{/privacy}", "received_events_url": "https://api.github.com/users/piercefreeman/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2023-06-19T14:16:14
2023-06-19T14:16:14
null
NONE
null
### Describe the bug When doing a map of a dataset with complex types, sometimes `datasets` is unable to interpret the valid schema of a returned datasets.map() function. This often comes from conflicting types, like when both empty lists and filled lists are competing for the same field value. This is prone to happen in batch mapping, when the mapper returns a sequence of null/empty values and other batches are non-null. A workaround is to manually cast the new batch to a pyarrow table (like implemented in this [workaround](https://github.com/piercefreeman/lassen/pull/3)) but it feels like this ideally should be solved at the core library level. Note that the reproduction case only throws this error if the first datapoint has the empty list. If it is processed later, datasets already detects its representation as list-type and therefore allows the empty list to be provided. ### Steps to reproduce the bug A trivial reproduction case: ```python from typing import Iterator, Any import pandas as pd from datasets import Dataset def batch_to_examples(batch: dict[str, list[Any]]) -> Iterator[dict[str, Any]]: for i in range(next(iter(lengths))): yield {feature: values[i] for feature, values in batch.items()} def examples_to_batch(examples) -> dict[str, list[Any]]: batch = {} for example in examples: for feature, value in example.items(): if feature not in batch: batch[feature] = [] batch[feature].append(value) return batch def batch_process(examples, explicit_schema: bool): new_examples = [] for example in batch_to_examples(examples): new_examples.append(dict(texts=example["raw_text"].split())) return examples_to_batch(new_examples) df = pd.DataFrame( [ {"raw_text": ""}, {"raw_text": "This is a test"}, {"raw_text": "This is another test"}, ] ) dataset = Dataset.from_pandas(df) # datasets won't be able to typehint a dataset that starts with an empty example. with pytest.raises(TypeError, match="Couldn't cast array of type"): dataset = dataset.map( batch_process, batched=True, batch_size=1, num_proc=1, remove_columns=dataset.column_names, ) ``` This results in crashes like: ```bash File "/Users/piercefreeman/Library/Caches/pypoetry/virtualenvs/example-9kBqeSPy-py3.11/lib/python3.11/site-packages/datasets/table.py", line 1819, in wrapper return func(array, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/piercefreeman/Library/Caches/pypoetry/virtualenvs/example-9kBqeSPy-py3.11/lib/python3.11/site-packages/datasets/table.py", line 2109, in cast_array_to_feature return array_cast(array, feature(), allow_number_to_str=allow_number_to_str) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/piercefreeman/Library/Caches/pypoetry/virtualenvs/example-9kBqeSPy-py3.11/lib/python3.11/site-packages/datasets/table.py", line 1819, in wrapper return func(array, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/piercefreeman/Library/Caches/pypoetry/virtualenvs/example-9kBqeSPy-py3.11/lib/python3.11/site-packages/datasets/table.py", line 1998, in array_cast raise TypeError(f"Couldn't cast array of type {array.type} to {pa_type}") TypeError: Couldn't cast array of type string to null ``` ### Expected behavior The code should successfully map and create a new dataset without error. ### Environment info Mac OSX, Linux
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5965/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5965/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5964
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5964/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5964/comments
https://api.github.com/repos/huggingface/datasets/issues/5964/events
https://github.com/huggingface/datasets/pull/5964
1,763,513,574
PR_kwDODunzps5TVweZ
5,964
Always return list in `list_datasets`
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006795 / 0.011353 (-0.004558) | 0.004170 / 0.011008 (-0.006838) | 0.098698 / 0.038508 (0.060190) | 0.045393 / 0.023109 (0.022284) | 0.309205 / 0.275898 (0.033307) | 0.361333 / 0.323480 (0.037853) | 0.006009 / 0.007986 (-0.001977) | 0.003334 / 0.004328 (-0.000995) | 0.075071 / 0.004250 (0.070821) | 0.062587 / 0.037052 (0.025535) | 0.322395 / 0.258489 (0.063906) | 0.360499 / 0.293841 (0.066659) | 0.032243 / 0.128546 (-0.096303) | 0.008768 / 0.075646 (-0.066878) | 0.329799 / 0.419271 (-0.089472) | 0.062261 / 0.043533 (0.018728) | 0.298112 / 0.255139 (0.042973) | 0.322815 / 0.283200 (0.039615) | 0.032348 / 0.141683 (-0.109335) | 1.445807 / 1.452155 (-0.006347) | 1.528768 / 1.492716 (0.036051) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.195701 / 0.018006 (0.177695) | 0.437042 / 0.000490 (0.436552) | 0.003867 / 0.000200 (0.003667) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026713 / 0.037411 (-0.010698) | 0.109548 / 0.014526 (0.095022) | 0.119216 / 0.176557 (-0.057341) | 0.178947 / 0.737135 (-0.558188) | 0.125224 / 0.296338 (-0.171114) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400885 / 0.215209 (0.185676) | 3.991223 / 2.077655 (1.913568) | 1.818449 / 1.504120 (0.314329) | 1.609285 / 1.541195 (0.068090) | 1.666675 / 1.468490 (0.198184) | 0.531486 / 4.584777 (-4.053291) | 3.770142 / 3.745712 (0.024430) | 3.057189 / 5.269862 (-2.212673) | 1.517491 / 4.565676 (-3.048186) | 0.065782 / 0.424275 (-0.358493) | 0.011251 / 0.007607 (0.003644) | 0.504277 / 0.226044 (0.278233) | 5.038979 / 2.268929 (2.770050) | 2.254717 / 55.444624 (-53.189908) | 1.929743 / 6.876477 (-4.946734) | 2.080051 / 2.142072 (-0.062022) | 0.656831 / 4.805227 (-4.148396) | 0.142860 / 6.500664 (-6.357804) | 0.063057 / 0.075469 (-0.012412) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.208819 / 1.841788 (-0.632969) | 14.456966 / 8.074308 (6.382658) | 12.839799 / 10.191392 (2.648407) | 0.164361 / 0.680424 (-0.516063) | 0.017330 / 0.534201 (-0.516871) | 0.397384 / 0.579283 (-0.181899) | 0.422704 / 0.434364 (-0.011660) | 0.472065 / 0.540337 (-0.068273) | 0.576960 / 1.386936 (-0.809976) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006950 / 0.011353 (-0.004403) | 0.004012 / 0.011008 (-0.006997) | 0.076050 / 0.038508 (0.037542) | 0.046646 / 0.023109 (0.023537) | 0.353813 / 0.275898 (0.077915) | 0.417111 / 0.323480 (0.093631) | 0.005422 / 0.007986 (-0.002564) | 0.003356 / 0.004328 (-0.000972) | 0.076662 / 0.004250 (0.072411) | 0.055018 / 0.037052 (0.017966) | 0.371561 / 0.258489 (0.113072) | 0.410471 / 0.293841 (0.116630) | 0.031860 / 0.128546 (-0.096686) | 0.008754 / 0.075646 (-0.066893) | 0.083192 / 0.419271 (-0.336079) | 0.050479 / 0.043533 (0.006946) | 0.351725 / 0.255139 (0.096586) | 0.371596 / 0.283200 (0.088396) | 0.023042 / 0.141683 (-0.118641) | 1.480533 / 1.452155 (0.028379) | 1.545970 / 1.492716 (0.053254) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220095 / 0.018006 (0.202089) | 0.441550 / 0.000490 (0.441061) | 0.000375 / 0.000200 (0.000175) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029527 / 0.037411 (-0.007884) | 0.111645 / 0.014526 (0.097119) | 0.125732 / 0.176557 (-0.050825) | 0.177322 / 0.737135 (-0.559813) | 0.128620 / 0.296338 (-0.167718) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432415 / 0.215209 (0.217206) | 4.314381 / 2.077655 (2.236726) | 2.079450 / 1.504120 (0.575331) | 1.893139 / 1.541195 (0.351944) | 1.951363 / 1.468490 (0.482873) | 0.531466 / 4.584777 (-4.053311) | 3.716860 / 3.745712 (-0.028852) | 1.850111 / 5.269862 (-3.419750) | 1.100676 / 4.565676 (-3.465000) | 0.066247 / 0.424275 (-0.358028) | 0.011503 / 0.007607 (0.003896) | 0.537208 / 0.226044 (0.311164) | 5.367560 / 2.268929 (3.098631) | 2.543697 / 55.444624 (-52.900927) | 2.221670 / 6.876477 (-4.654806) | 2.252009 / 2.142072 (0.109937) | 0.658509 / 4.805227 (-4.146718) | 0.142345 / 6.500664 (-6.358319) | 0.064701 / 0.075469 (-0.010768) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.266442 / 1.841788 (-0.575346) | 15.105953 / 8.074308 (7.031645) | 14.288229 / 10.191392 (4.096837) | 0.161182 / 0.680424 (-0.519242) | 0.017074 / 0.534201 (-0.517127) | 0.399464 / 0.579283 (-0.179819) | 0.419459 / 0.434364 (-0.014905) | 0.467553 / 0.540337 (-0.072784) | 0.566337 / 1.386936 (-0.820599) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#53ac2d9662f9e5923ae7c52199eaa620d82f0043 \"CML watermark\")\n" ]
2023-06-19T13:07:08
2023-06-19T17:29:37
2023-06-19T17:22:41
CONTRIBUTOR
null
Fix #5925 Plus, deprecate `list_datasets`/`inspect_dataset` in favor of `huggingface_hub.list_datasets`/"git clone workflow" (downloads data files)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5964/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5964/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5964", "html_url": "https://github.com/huggingface/datasets/pull/5964", "diff_url": "https://github.com/huggingface/datasets/pull/5964.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5964.patch", "merged_at": "2023-06-19T17:22:41" }
true
https://api.github.com/repos/huggingface/datasets/issues/5963
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5963/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5963/comments
https://api.github.com/repos/huggingface/datasets/issues/5963/events
https://github.com/huggingface/datasets/issues/5963
1,762,774,457
I_kwDODunzps5pEc25
5,963
Got an error _pickle.PicklingError use Dataset.from_spark.
{ "login": "yanzia12138", "id": 112800614, "node_id": "U_kgDOBrkzZg", "avatar_url": "https://avatars.githubusercontent.com/u/112800614?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yanzia12138", "html_url": "https://github.com/yanzia12138", "followers_url": "https://api.github.com/users/yanzia12138/followers", "following_url": "https://api.github.com/users/yanzia12138/following{/other_user}", "gists_url": "https://api.github.com/users/yanzia12138/gists{/gist_id}", "starred_url": "https://api.github.com/users/yanzia12138/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yanzia12138/subscriptions", "organizations_url": "https://api.github.com/users/yanzia12138/orgs", "repos_url": "https://api.github.com/users/yanzia12138/repos", "events_url": "https://api.github.com/users/yanzia12138/events{/privacy}", "received_events_url": "https://api.github.com/users/yanzia12138/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "i got error using method from_spark when using multi-node Spark cluster. seems could only use \"from_spark\" in local?", "@lhoestq ", "cc @maddiedawson it looks like there an issue with `_validate_cache_dir` ?\r\n\r\nIt looks like the function passed to mapPartitions has a reference to the Spark dataset builder, and therefore contains the SparkContext itself.\r\n\r\nI think it can be fixed by defining `create_cache_and_write_probe` outside the Spark dataset builder, and pass a `partial(create_cache_and_write_probe, cache_dir=self._cache_dir)` to `mapPartitions`" ]
2023-06-19T05:30:35
2023-06-19T10:44:31
null
NONE
null
python 3.9.2 Got an error _pickle.PicklingError use Dataset.from_spark. Did the dataset import load data from spark dataframe using multi-node Spark cluster df = spark.read.parquet(args.input_data).repartition(50) ds = Dataset.from_spark(df, keep_in_memory=True, cache_dir="/pnc-data/data/nuplan/t5_spark/cache_data") ds.save_to_disk(args.output_data) Error : _pickle.PicklingError: Could not serialize object: RuntimeError: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transforma tion. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063. 23/06/16 21:17:20 WARN ExecutorPodsWatchSnapshotSource: Kubernetes client has been closed (this is expected if the application is shutting down.) _Originally posted by @yanzia12138 in https://github.com/huggingface/datasets/issues/5701#issuecomment-1594674306_ W Traceback (most recent call last): File "/home/work/main.py", line 100, in <module> run(args) File "/home/work/main.py", line 80, in run ds = Dataset.from_spark(df1, keep_in_memory=True, File "/home/work/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 1281, in from_spark return SparkDatasetReader( File "/home/work/.local/lib/python3.9/site-packages/datasets/io/spark.py", line 53, in read self.builder.download_and_prepare( File "/home/work/.local/lib/python3.9/site-packages/datasets/builder.py", line 909, in download_and_prepare self._download_and_prepare( File "/home/work/.local/lib/python3.9/site-packages/datasets/builder.py", line 1004, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/work/.local/lib/python3.9/site-packages/datasets/packaged_modules/spark/spark.py", line 254, in _prepare_split self._validate_cache_dir() File "/home/work/.local/lib/python3.9/site-packages/datasets/packaged_modules/spark/spark.py", line 122, in _validate_cache_dir self._spark.sparkContext.parallelize(range(1), 1).mapPartitions(create_cache_and_write_probe).collect() File "/home/work/.local/lib/python3.9/site-packages/pyspark/rdd.py", line 950, in collect sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd()) File "/home/work/.local/lib/python3.9/site-packages/pyspark/rdd.py", line 2951, in _jrdd wrapped_func = _wrap_function(self.ctx, self.func, self._prev_jrdd_deserializer, File "/home/work/.local/lib/python3.9/site-packages/pyspark/rdd.py", line 2830, in _wrap_function pickled_command, broadcast_vars, env, includes = _prepare_for_python_RDD(sc, command) File "/home/work/.local/lib/python3.9/site-packages/pyspark/rdd.py", line 2816, in _prepare_for_python_RDD pickled_command = ser.dumps(command) File "/home/work/.local/lib/python3.9/site-packages/pyspark/serializers.py", line 447, in dumps raise pickle.PicklingError(msg) _pickle.PicklingError: Could not serialize object: RuntimeError: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transformation. S parkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063. 23/06/19 13:51:21 WARN ExecutorPodsWatchSnapshotSource: Kubernetes client has been closed (this is expected if the application is shutting down.)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5963/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5963/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5962
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5962/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5962/comments
https://api.github.com/repos/huggingface/datasets/issues/5962/events
https://github.com/huggingface/datasets/issues/5962
1,761,589,882
I_kwDODunzps5o_7p6
5,962
Issue with train_test_split maintaining the same underlying PyArrow Table
{ "login": "Oziel14", "id": 70730520, "node_id": "MDQ6VXNlcjcwNzMwNTIw", "avatar_url": "https://avatars.githubusercontent.com/u/70730520?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Oziel14", "html_url": "https://github.com/Oziel14", "followers_url": "https://api.github.com/users/Oziel14/followers", "following_url": "https://api.github.com/users/Oziel14/following{/other_user}", "gists_url": "https://api.github.com/users/Oziel14/gists{/gist_id}", "starred_url": "https://api.github.com/users/Oziel14/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Oziel14/subscriptions", "organizations_url": "https://api.github.com/users/Oziel14/orgs", "repos_url": "https://api.github.com/users/Oziel14/repos", "events_url": "https://api.github.com/users/Oziel14/events{/privacy}", "received_events_url": "https://api.github.com/users/Oziel14/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2023-06-17T02:19:58
2023-06-17T02:19:58
null
NONE
null
### Describe the bug I've been using the train_test_split method in the datasets module to split my HuggingFace Dataset into separate training, validation, and testing subsets. However, I've noticed an issue where the split datasets appear to maintain the same underlying PyArrow Table. ### Steps to reproduce the bug 1. Load any dataset ```dataset = load_dataset("lhoestq/demo1")``` 2. Try the next code: ```python from datasets import Dataset, DatasetDict train_size = 0.6 split_train = dataset["train"].train_test_split( train_size=train_size, ) separate_dataset_dict = DatasetDict({ "train": split_train["train"], "test": split_train["test"], }) ``` 3. The next code ```print(separate_dataset_dict)``` when printing the dataset it gives the indication that they have 3 and 2 rows respectively. 4. But the next code: ```python print(len(separate_dataset_dict["train"].data['id'])) print(len(separate_dataset_dict["test"].data['id'])) ``` Indicates that both tables still have 5 rows. ### Expected behavior However, I've noticed that train_test_split["train"].data, test_val_split["train"].data, and test_val_split["test"].data are identical, suggesting that they all point to the same underlying PyArrow Table. This means that the split datasets are not independent, as I expected. I believe this is a bug in the train_test_split implementation, as I would expect this function to return datasets with separate underlying PyArrow Tables. Could you please help me understand if this is expected behavior, or if there's a workaround to create truly independent split datasets? I would appreciate any assistance with this issue. Thank you. ### Environment info I tried in Colab: - `datasets` version: 2.13.0 - Platform: Windows-10-10.0.22621-SP0 - Python version: 3.10.11 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1 and my PC: - `datasets` version: 2.13.0 - Platform: Linux-5.15.107+-x86_64-with-glibc2.31 - Python version: 3.10.12 - Huggingface_hub version: 0.15.1 - PyArrow version: 9.0.0 - Pandas version: 1.5.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5962/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5962/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5961
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5961/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5961/comments
https://api.github.com/repos/huggingface/datasets/issues/5961/events
https://github.com/huggingface/datasets/issues/5961
1,758,525,111
I_kwDODunzps5o0Pa3
5,961
IterableDataset: split by node and map may preprocess samples that will be skipped anyway
{ "login": "johnchienbronci", "id": 27708347, "node_id": "MDQ6VXNlcjI3NzA4MzQ3", "avatar_url": "https://avatars.githubusercontent.com/u/27708347?v=4", "gravatar_id": "", "url": "https://api.github.com/users/johnchienbronci", "html_url": "https://github.com/johnchienbronci", "followers_url": "https://api.github.com/users/johnchienbronci/followers", "following_url": "https://api.github.com/users/johnchienbronci/following{/other_user}", "gists_url": "https://api.github.com/users/johnchienbronci/gists{/gist_id}", "starred_url": "https://api.github.com/users/johnchienbronci/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/johnchienbronci/subscriptions", "organizations_url": "https://api.github.com/users/johnchienbronci/orgs", "repos_url": "https://api.github.com/users/johnchienbronci/repos", "events_url": "https://api.github.com/users/johnchienbronci/events{/privacy}", "received_events_url": "https://api.github.com/users/johnchienbronci/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Does \"number of shards\" refer to the total number of data?\r\n\r\nmy config:\r\nnproc_per_node=2\r\nds=ds['train'] = load_dataset(streaming=True).take(50000)\r\n\r\nI'm test again: in prepare_data(), data have the same for each GPU\r\n", "The number of shards is `ds.n_shards`. It corresponds generally to the number of files the dataset is made of, to be able to distribute to several nodes.\r\n\r\n**You don't end up with the same data per GPU**. But all the samples are going through your preprocessing function you pass to map. They are just skipped afterwards to only keep 1 sample out of n(GPUs)", "For each GPU, although see the same data in prepare_data(), the actual training data will not be the same in the end. \r\nIs my understanding correct?\r\n\r\nWhere can I print the actual training data for each GPU?", "> For each GPU, although see the same data in prepare_data(), the actual training data will not be the same in the end.\r\nIs my understanding correct?\r\n\r\nYes exactly :)\r\n\r\n> Where can I print the actual training data for each GPU?\r\n\r\nYou should call print in the data_collator", "I print out n_shards, and under multiple GPUs, this value is always 1.\r\nIs this value correct?", "Yes it's correct, and it explains why you always have the same data passed to your map function (the data can't be split).\r\n\r\nBut after being passed to `map`, each GPU keeps one example out of n(GPUs) so that you don't end up with duplicate data across GPUs", "> > For each GPU, although see the same data in prepare_data(), the actual training data will not be the same in the end.\r\n> > Is my understanding correct?\r\n> \r\n> Yes exactly :)\r\n> \r\n> > Where can I print the actual training data for each GPU?\r\n> \r\n> You should call print in the data_collator\r\n\r\nOK, when printing the train data in the data collator, each GPU sees different data.\r\n\r\nThanks for your reply" ]
2023-06-15T10:29:10
2023-06-20T01:30:40
null
NONE
null
There are two ways an iterable dataset can be split by node: 1. if the number of shards is a factor of number of GPUs: in that case the shards are evenly distributed per GPU 2. otherwise, each GPU iterate on the data and at the end keeps 1 sample out of n(GPUs) - skipping the others. In case 2. it's therefore possible to have the same examples passed to `prepare_dataset` for each GPU. This doesn't sound optimized though, because it runs the preprocessing on samples that won't be used in the end. Could you open a new issue so that we can discuss about this and find a solution ? _Originally posted by @lhoestq in https://github.com/huggingface/datasets/issues/5360#issuecomment-1592729051_
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5961/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5961/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5959
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5959/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5959/comments
https://api.github.com/repos/huggingface/datasets/issues/5959/events
https://github.com/huggingface/datasets/issues/5959
1,757,397,507
I_kwDODunzps5ov8ID
5,959
read metric glue.py from local file
{ "login": "JiazhaoLi", "id": 31148397, "node_id": "MDQ6VXNlcjMxMTQ4Mzk3", "avatar_url": "https://avatars.githubusercontent.com/u/31148397?v=4", "gravatar_id": "", "url": "https://api.github.com/users/JiazhaoLi", "html_url": "https://github.com/JiazhaoLi", "followers_url": "https://api.github.com/users/JiazhaoLi/followers", "following_url": "https://api.github.com/users/JiazhaoLi/following{/other_user}", "gists_url": "https://api.github.com/users/JiazhaoLi/gists{/gist_id}", "starred_url": "https://api.github.com/users/JiazhaoLi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JiazhaoLi/subscriptions", "organizations_url": "https://api.github.com/users/JiazhaoLi/orgs", "repos_url": "https://api.github.com/users/JiazhaoLi/repos", "events_url": "https://api.github.com/users/JiazhaoLi/events{/privacy}", "received_events_url": "https://api.github.com/users/JiazhaoLi/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Sorry, I solve this by call `evaluate.load('glue_metric.py','sst-2')`\r\n" ]
2023-06-14T17:59:35
2023-06-14T18:04:16
2023-06-14T18:04:16
NONE
null
### Describe the bug Currently, The server is off-line. I am using the glue metric from the local file downloaded from the hub. I download / cached datasets using `load_dataset('glue','sst2', cache_dir='/xxx')` to cache them and then in the off-line mode, I use `load_dataset('xxx/glue.py','sst2', cache_dir='/xxx')`. I can successfully reuse cached datasets. My problem is about the load_metric. When I run `load_dataset('xxx/glue_metric.py','sst2',cache_dir='/xxx')` , it returns ` File "xx/lib64/python3.9/site-packages/datasets/utils/deprecation_utils.py", line 46, in wrapper return deprecated_function(*args, **kwargs) File "xx//lib64/python3.9/site-packages/datasets/load.py", line 1392, in load_metric metric = metric_cls( TypeError: 'NoneType' object is not callable` Thanks in advance for help! ### Steps to reproduce the bug N/A ### Expected behavior N/A ### Environment info `datasets == 2.12.0`
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5959/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5959/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5958
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5958/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5958/comments
https://api.github.com/repos/huggingface/datasets/issues/5958/events
https://github.com/huggingface/datasets/pull/5958
1,757,265,971
PR_kwDODunzps5TA3__
5,958
set dev version
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5958). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006232 / 0.011353 (-0.005121) | 0.003788 / 0.011008 (-0.007220) | 0.100014 / 0.038508 (0.061506) | 0.036488 / 0.023109 (0.013379) | 0.306255 / 0.275898 (0.030357) | 0.363337 / 0.323480 (0.039857) | 0.004765 / 0.007986 (-0.003221) | 0.002935 / 0.004328 (-0.001394) | 0.078897 / 0.004250 (0.074647) | 0.052221 / 0.037052 (0.015169) | 0.315169 / 0.258489 (0.056680) | 0.353050 / 0.293841 (0.059209) | 0.029059 / 0.128546 (-0.099488) | 0.008599 / 0.075646 (-0.067047) | 0.318770 / 0.419271 (-0.100502) | 0.046631 / 0.043533 (0.003098) | 0.303728 / 0.255139 (0.048589) | 0.332379 / 0.283200 (0.049180) | 0.021164 / 0.141683 (-0.120519) | 1.576963 / 1.452155 (0.124808) | 1.629575 / 1.492716 (0.136859) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.204246 / 0.018006 (0.186240) | 0.426600 / 0.000490 (0.426110) | 0.004336 / 0.000200 (0.004136) | 0.000082 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024039 / 0.037411 (-0.013372) | 0.098240 / 0.014526 (0.083715) | 0.108889 / 0.176557 (-0.067668) | 0.170827 / 0.737135 (-0.566308) | 0.111288 / 0.296338 (-0.185051) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418103 / 0.215209 (0.202894) | 4.190759 / 2.077655 (2.113104) | 1.875978 / 1.504120 (0.371858) | 1.679198 / 1.541195 (0.138003) | 1.737965 / 1.468490 (0.269474) | 0.556660 / 4.584777 (-4.028117) | 3.413800 / 3.745712 (-0.331912) | 3.004999 / 5.269862 (-2.264862) | 1.464030 / 4.565676 (-3.101647) | 0.067338 / 0.424275 (-0.356937) | 0.011486 / 0.007607 (0.003879) | 0.522589 / 0.226044 (0.296544) | 5.214653 / 2.268929 (2.945724) | 2.316903 / 55.444624 (-53.127722) | 1.991941 / 6.876477 (-4.884536) | 2.110601 / 2.142072 (-0.031471) | 0.665400 / 4.805227 (-4.139828) | 0.135755 / 6.500664 (-6.364910) | 0.065980 / 0.075469 (-0.009489) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.197269 / 1.841788 (-0.644519) | 14.085205 / 8.074308 (6.010897) | 14.083360 / 10.191392 (3.891968) | 0.148054 / 0.680424 (-0.532369) | 0.016548 / 0.534201 (-0.517653) | 0.371538 / 0.579283 (-0.207745) | 0.391068 / 0.434364 (-0.043296) | 0.430589 / 0.540337 (-0.109748) | 0.529319 / 1.386936 (-0.857617) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006214 / 0.011353 (-0.005138) | 0.003846 / 0.011008 (-0.007162) | 0.078559 / 0.038508 (0.040051) | 0.037855 / 0.023109 (0.014745) | 0.437479 / 0.275898 (0.161581) | 0.497588 / 0.323480 (0.174108) | 0.003491 / 0.007986 (-0.004494) | 0.003900 / 0.004328 (-0.000428) | 0.078443 / 0.004250 (0.074193) | 0.048019 / 0.037052 (0.010967) | 0.452076 / 0.258489 (0.193587) | 0.494597 / 0.293841 (0.200756) | 0.028127 / 0.128546 (-0.100419) | 0.008549 / 0.075646 (-0.067098) | 0.082977 / 0.419271 (-0.336295) | 0.043133 / 0.043533 (-0.000400) | 0.441342 / 0.255139 (0.186203) | 0.464339 / 0.283200 (0.181139) | 0.020110 / 0.141683 (-0.121573) | 1.485181 / 1.452155 (0.033026) | 1.532019 / 1.492716 (0.039302) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228014 / 0.018006 (0.210007) | 0.416887 / 0.000490 (0.416397) | 0.001133 / 0.000200 (0.000933) | 0.000108 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026452 / 0.037411 (-0.010960) | 0.104328 / 0.014526 (0.089802) | 0.110045 / 0.176557 (-0.066511) | 0.164725 / 0.737135 (-0.572410) | 0.116348 / 0.296338 (-0.179990) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.483502 / 0.215209 (0.268293) | 4.829814 / 2.077655 (2.752159) | 2.505271 / 1.504120 (1.001151) | 2.305819 / 1.541195 (0.764624) | 2.348633 / 1.468490 (0.880143) | 0.562316 / 4.584777 (-4.022461) | 3.426425 / 3.745712 (-0.319287) | 1.737934 / 5.269862 (-3.531927) | 1.042616 / 4.565676 (-3.523061) | 0.068088 / 0.424275 (-0.356187) | 0.011735 / 0.007607 (0.004128) | 0.586339 / 0.226044 (0.360295) | 5.861283 / 2.268929 (3.592354) | 2.953956 / 55.444624 (-52.490668) | 2.626611 / 6.876477 (-4.249865) | 2.687978 / 2.142072 (0.545906) | 0.672748 / 4.805227 (-4.132479) | 0.137231 / 6.500664 (-6.363433) | 0.068149 / 0.075469 (-0.007320) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.323139 / 1.841788 (-0.518649) | 14.503102 / 8.074308 (6.428794) | 14.092102 / 10.191392 (3.900710) | 0.165395 / 0.680424 (-0.515028) | 0.016898 / 0.534201 (-0.517303) | 0.366905 / 0.579283 (-0.212378) | 0.396671 / 0.434364 (-0.037692) | 0.421831 / 0.540337 (-0.118506) | 0.514075 / 1.386936 (-0.872861) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9d4238c132dd44b9a6e1dfe7101228bdeb538d57 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007778 / 0.011353 (-0.003575) | 0.004624 / 0.011008 (-0.006384) | 0.123426 / 0.038508 (0.084918) | 0.052209 / 0.023109 (0.029100) | 0.341084 / 0.275898 (0.065186) | 0.421905 / 0.323480 (0.098425) | 0.005768 / 0.007986 (-0.002217) | 0.003647 / 0.004328 (-0.000682) | 0.085569 / 0.004250 (0.081319) | 0.070473 / 0.037052 (0.033421) | 0.356626 / 0.258489 (0.098136) | 0.407413 / 0.293841 (0.113572) | 0.038800 / 0.128546 (-0.089746) | 0.010289 / 0.075646 (-0.065357) | 0.462707 / 0.419271 (0.043436) | 0.060390 / 0.043533 (0.016858) | 0.349805 / 0.255139 (0.094666) | 0.355288 / 0.283200 (0.072088) | 0.025364 / 0.141683 (-0.116318) | 1.745720 / 1.452155 (0.293565) | 1.852764 / 1.492716 (0.360048) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.290582 / 0.018006 (0.272576) | 0.480044 / 0.000490 (0.479554) | 0.007658 / 0.000200 (0.007458) | 0.000100 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031529 / 0.037411 (-0.005882) | 0.130441 / 0.014526 (0.115915) | 0.147653 / 0.176557 (-0.028904) | 0.215935 / 0.737135 (-0.521200) | 0.149871 / 0.296338 (-0.146467) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.461662 / 0.215209 (0.246453) | 4.570353 / 2.077655 (2.492698) | 2.104416 / 1.504120 (0.600297) | 1.936974 / 1.541195 (0.395779) | 2.139167 / 1.468490 (0.670677) | 0.645100 / 4.584777 (-3.939677) | 4.361536 / 3.745712 (0.615824) | 2.155960 / 5.269862 (-3.113902) | 1.207854 / 4.565676 (-3.357822) | 0.080162 / 0.424275 (-0.344113) | 0.014265 / 0.007607 (0.006658) | 0.606294 / 0.226044 (0.380250) | 5.928093 / 2.268929 (3.659165) | 2.701811 / 55.444624 (-52.742813) | 2.344490 / 6.876477 (-4.531987) | 2.435997 / 2.142072 (0.293925) | 0.761020 / 4.805227 (-4.044207) | 0.165860 / 6.500664 (-6.334804) | 0.075666 / 0.075469 (0.000197) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.427318 / 1.841788 (-0.414469) | 17.327468 / 8.074308 (9.253160) | 15.323065 / 10.191392 (5.131673) | 0.178518 / 0.680424 (-0.501905) | 0.020888 / 0.534201 (-0.513313) | 0.497891 / 0.579283 (-0.081393) | 0.487717 / 0.434364 (0.053353) | 0.581430 / 0.540337 (0.041093) | 0.703430 / 1.386936 (-0.683506) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007954 / 0.011353 (-0.003399) | 0.004442 / 0.011008 (-0.006566) | 0.090950 / 0.038508 (0.052442) | 0.054282 / 0.023109 (0.031173) | 0.424474 / 0.275898 (0.148576) | 0.531770 / 0.323480 (0.208290) | 0.004492 / 0.007986 (-0.003493) | 0.004745 / 0.004328 (0.000416) | 0.088213 / 0.004250 (0.083962) | 0.063967 / 0.037052 (0.026914) | 0.454256 / 0.258489 (0.195767) | 0.502870 / 0.293841 (0.209029) | 0.038203 / 0.128546 (-0.090343) | 0.010327 / 0.075646 (-0.065319) | 0.097809 / 0.419271 (-0.321463) | 0.062136 / 0.043533 (0.018604) | 0.426148 / 0.255139 (0.171009) | 0.467812 / 0.283200 (0.184612) | 0.029148 / 0.141683 (-0.112535) | 1.762307 / 1.452155 (0.310152) | 1.814238 / 1.492716 (0.321521) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.195676 / 0.018006 (0.177670) | 0.475382 / 0.000490 (0.474892) | 0.003070 / 0.000200 (0.002870) | 0.000112 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033945 / 0.037411 (-0.003466) | 0.134666 / 0.014526 (0.120140) | 0.147585 / 0.176557 (-0.028971) | 0.209472 / 0.737135 (-0.527664) | 0.154471 / 0.296338 (-0.141867) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.518132 / 0.215209 (0.302923) | 5.103423 / 2.077655 (3.025768) | 2.565207 / 1.504120 (1.061087) | 2.389454 / 1.541195 (0.848259) | 2.391706 / 1.468490 (0.923216) | 0.606463 / 4.584777 (-3.978314) | 4.392227 / 3.745712 (0.646515) | 2.067121 / 5.269862 (-3.202741) | 1.217551 / 4.565676 (-3.348125) | 0.074304 / 0.424275 (-0.349971) | 0.013418 / 0.007607 (0.005811) | 0.623327 / 0.226044 (0.397282) | 6.340233 / 2.268929 (4.071304) | 3.153948 / 55.444624 (-52.290677) | 2.824548 / 6.876477 (-4.051929) | 2.938402 / 2.142072 (0.796329) | 0.774305 / 4.805227 (-4.030922) | 0.170681 / 6.500664 (-6.329983) | 0.075895 / 0.075469 (0.000426) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.473491 / 1.841788 (-0.368296) | 17.372294 / 8.074308 (9.297986) | 15.550201 / 10.191392 (5.358809) | 0.191402 / 0.680424 (-0.489022) | 0.021401 / 0.534201 (-0.512800) | 0.484377 / 0.579283 (-0.094906) | 0.488844 / 0.434364 (0.054480) | 0.563336 / 0.540337 (0.022999) | 0.694210 / 1.386936 (-0.692726) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b96da7f51d81e52d7b587685f820b5e55f71e07d \"CML watermark\")\n" ]
2023-06-14T16:26:34
2023-06-14T16:34:55
2023-06-14T16:26:51
MEMBER
null
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5958/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5958/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5958", "html_url": "https://github.com/huggingface/datasets/pull/5958", "diff_url": "https://github.com/huggingface/datasets/pull/5958.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5958.patch", "merged_at": "2023-06-14T16:26:51" }
true
https://api.github.com/repos/huggingface/datasets/issues/5957
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5957/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5957/comments
https://api.github.com/repos/huggingface/datasets/issues/5957/events
https://github.com/huggingface/datasets/pull/5957
1,757,252,466
PR_kwDODunzps5TA1EB
5,957
Release: 2.13.0
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006498 / 0.011353 (-0.004855) | 0.003970 / 0.011008 (-0.007038) | 0.099242 / 0.038508 (0.060734) | 0.044363 / 0.023109 (0.021254) | 0.313900 / 0.275898 (0.038002) | 0.386562 / 0.323480 (0.063082) | 0.003837 / 0.007986 (-0.004149) | 0.004203 / 0.004328 (-0.000125) | 0.076191 / 0.004250 (0.071940) | 0.058823 / 0.037052 (0.021771) | 0.333838 / 0.258489 (0.075349) | 0.368235 / 0.293841 (0.074394) | 0.030774 / 0.128546 (-0.097772) | 0.008787 / 0.075646 (-0.066860) | 0.326474 / 0.419271 (-0.092798) | 0.050903 / 0.043533 (0.007370) | 0.303928 / 0.255139 (0.048789) | 0.321532 / 0.283200 (0.038333) | 0.024162 / 0.141683 (-0.117520) | 1.479662 / 1.452155 (0.027507) | 1.520300 / 1.492716 (0.027584) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212403 / 0.018006 (0.194397) | 0.448019 / 0.000490 (0.447529) | 0.005465 / 0.000200 (0.005265) | 0.000388 / 0.000054 (0.000334) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027533 / 0.037411 (-0.009878) | 0.117477 / 0.014526 (0.102952) | 0.121182 / 0.176557 (-0.055374) | 0.181150 / 0.737135 (-0.555985) | 0.128557 / 0.296338 (-0.167782) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397763 / 0.215209 (0.182554) | 3.959460 / 2.077655 (1.881805) | 1.822057 / 1.504120 (0.317937) | 1.627020 / 1.541195 (0.085826) | 1.695394 / 1.468490 (0.226904) | 0.536848 / 4.584777 (-4.047929) | 3.765205 / 3.745712 (0.019493) | 3.196300 / 5.269862 (-2.073561) | 1.623583 / 4.565676 (-2.942094) | 0.065823 / 0.424275 (-0.358452) | 0.011062 / 0.007607 (0.003455) | 0.500428 / 0.226044 (0.274384) | 5.008816 / 2.268929 (2.739888) | 2.314660 / 55.444624 (-53.129965) | 2.007429 / 6.876477 (-4.869047) | 2.141438 / 2.142072 (-0.000635) | 0.656697 / 4.805227 (-4.148530) | 0.143555 / 6.500664 (-6.357109) | 0.063928 / 0.075469 (-0.011541) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.169038 / 1.841788 (-0.672750) | 15.027186 / 8.074308 (6.952878) | 13.571484 / 10.191392 (3.380092) | 0.166437 / 0.680424 (-0.513986) | 0.017656 / 0.534201 (-0.516545) | 0.397725 / 0.579283 (-0.181558) | 0.451019 / 0.434364 (0.016655) | 0.469134 / 0.540337 (-0.071203) | 0.575885 / 1.386936 (-0.811051) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006887 / 0.011353 (-0.004465) | 0.004166 / 0.011008 (-0.006842) | 0.077137 / 0.038508 (0.038629) | 0.055631 / 0.023109 (0.032522) | 0.397658 / 0.275898 (0.121760) | 0.473981 / 0.323480 (0.150502) | 0.005365 / 0.007986 (-0.002621) | 0.003401 / 0.004328 (-0.000928) | 0.076481 / 0.004250 (0.072231) | 0.056014 / 0.037052 (0.018961) | 0.415253 / 0.258489 (0.156764) | 0.457620 / 0.293841 (0.163779) | 0.031850 / 0.128546 (-0.096696) | 0.008869 / 0.075646 (-0.066777) | 0.083475 / 0.419271 (-0.335796) | 0.049232 / 0.043533 (0.005699) | 0.392947 / 0.255139 (0.137808) | 0.417243 / 0.283200 (0.134043) | 0.024554 / 0.141683 (-0.117129) | 1.508081 / 1.452155 (0.055926) | 1.541845 / 1.492716 (0.049129) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228470 / 0.018006 (0.210464) | 0.450933 / 0.000490 (0.450443) | 0.001508 / 0.000200 (0.001308) | 0.000083 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030189 / 0.037411 (-0.007222) | 0.118853 / 0.014526 (0.104327) | 0.124809 / 0.176557 (-0.051747) | 0.175066 / 0.737135 (-0.562069) | 0.129819 / 0.296338 (-0.166519) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.451830 / 0.215209 (0.236621) | 4.505352 / 2.077655 (2.427698) | 2.309303 / 1.504120 (0.805183) | 2.120983 / 1.541195 (0.579789) | 2.198808 / 1.468490 (0.730317) | 0.543836 / 4.584777 (-4.040940) | 3.836650 / 3.745712 (0.090938) | 1.872293 / 5.269862 (-3.397568) | 1.122335 / 4.565676 (-3.443342) | 0.067463 / 0.424275 (-0.356812) | 0.012143 / 0.007607 (0.004536) | 0.553674 / 0.226044 (0.327630) | 5.572101 / 2.268929 (3.303173) | 2.772151 / 55.444624 (-52.672473) | 2.451557 / 6.876477 (-4.424920) | 2.521241 / 2.142072 (0.379169) | 0.665799 / 4.805227 (-4.139428) | 0.143842 / 6.500664 (-6.356822) | 0.065373 / 0.075469 (-0.010096) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.271013 / 1.841788 (-0.570775) | 15.290054 / 8.074308 (7.215746) | 14.807044 / 10.191392 (4.615652) | 0.163767 / 0.680424 (-0.516657) | 0.017383 / 0.534201 (-0.516818) | 0.393046 / 0.579283 (-0.186237) | 0.423056 / 0.434364 (-0.011308) | 0.459193 / 0.540337 (-0.081145) | 0.559964 / 1.386936 (-0.826972) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#011b75f044ef7fa6b8981ef3496615296aeb315b \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006112 / 0.011353 (-0.005241) | 0.003712 / 0.011008 (-0.007297) | 0.099996 / 0.038508 (0.061488) | 0.037526 / 0.023109 (0.014417) | 0.305834 / 0.275898 (0.029936) | 0.361368 / 0.323480 (0.037888) | 0.004849 / 0.007986 (-0.003136) | 0.002912 / 0.004328 (-0.001417) | 0.077729 / 0.004250 (0.073479) | 0.053203 / 0.037052 (0.016151) | 0.318088 / 0.258489 (0.059599) | 0.371745 / 0.293841 (0.077904) | 0.029384 / 0.128546 (-0.099162) | 0.008504 / 0.075646 (-0.067142) | 0.318472 / 0.419271 (-0.100799) | 0.046043 / 0.043533 (0.002510) | 0.310418 / 0.255139 (0.055279) | 0.335044 / 0.283200 (0.051844) | 0.020364 / 0.141683 (-0.121319) | 1.503201 / 1.452155 (0.051047) | 1.556408 / 1.492716 (0.063692) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210245 / 0.018006 (0.192239) | 0.418918 / 0.000490 (0.418428) | 0.002552 / 0.000200 (0.002352) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022295 / 0.037411 (-0.015116) | 0.099534 / 0.014526 (0.085008) | 0.106432 / 0.176557 (-0.070124) | 0.165110 / 0.737135 (-0.572026) | 0.109851 / 0.296338 (-0.186488) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.423947 / 0.215209 (0.208738) | 4.232978 / 2.077655 (2.155323) | 2.004849 / 1.504120 (0.500729) | 1.814345 / 1.541195 (0.273151) | 1.809192 / 1.468490 (0.340702) | 0.561146 / 4.584777 (-4.023631) | 3.385043 / 3.745712 (-0.360669) | 1.708265 / 5.269862 (-3.561597) | 1.030290 / 4.565676 (-3.535387) | 0.067095 / 0.424275 (-0.357180) | 0.011052 / 0.007607 (0.003445) | 0.522416 / 0.226044 (0.296371) | 5.207003 / 2.268929 (2.938075) | 2.367067 / 55.444624 (-53.077558) | 1.998705 / 6.876477 (-4.877772) | 2.068633 / 2.142072 (-0.073439) | 0.672396 / 4.805227 (-4.132831) | 0.135818 / 6.500664 (-6.364846) | 0.065229 / 0.075469 (-0.010240) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.187079 / 1.841788 (-0.654709) | 13.893153 / 8.074308 (5.818845) | 13.951328 / 10.191392 (3.759936) | 0.142519 / 0.680424 (-0.537905) | 0.016546 / 0.534201 (-0.517655) | 0.364008 / 0.579283 (-0.215275) | 0.385957 / 0.434364 (-0.048407) | 0.425218 / 0.540337 (-0.115120) | 0.519586 / 1.386936 (-0.867350) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005914 / 0.011353 (-0.005439) | 0.003619 / 0.011008 (-0.007389) | 0.077806 / 0.038508 (0.039298) | 0.037254 / 0.023109 (0.014144) | 0.378976 / 0.275898 (0.103078) | 0.433620 / 0.323480 (0.110140) | 0.003291 / 0.007986 (-0.004694) | 0.004523 / 0.004328 (0.000194) | 0.077604 / 0.004250 (0.073353) | 0.047493 / 0.037052 (0.010441) | 0.396027 / 0.258489 (0.137538) | 0.453345 / 0.293841 (0.159504) | 0.028170 / 0.128546 (-0.100376) | 0.008431 / 0.075646 (-0.067215) | 0.083985 / 0.419271 (-0.335286) | 0.045149 / 0.043533 (0.001617) | 0.369364 / 0.255139 (0.114225) | 0.407191 / 0.283200 (0.123991) | 0.024033 / 0.141683 (-0.117649) | 1.516838 / 1.452155 (0.064683) | 1.564260 / 1.492716 (0.071544) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200848 / 0.018006 (0.182842) | 0.407818 / 0.000490 (0.407328) | 0.003971 / 0.000200 (0.003771) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025033 / 0.037411 (-0.012378) | 0.103585 / 0.014526 (0.089059) | 0.108741 / 0.176557 (-0.067816) | 0.161061 / 0.737135 (-0.576075) | 0.112763 / 0.296338 (-0.183576) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.479913 / 0.215209 (0.264704) | 4.801904 / 2.077655 (2.724249) | 2.511433 / 1.504120 (1.007313) | 2.307523 / 1.541195 (0.766328) | 2.338343 / 1.468490 (0.869853) | 0.557731 / 4.584777 (-4.027046) | 3.386261 / 3.745712 (-0.359451) | 2.999978 / 5.269862 (-2.269883) | 1.463058 / 4.565676 (-3.102619) | 0.067645 / 0.424275 (-0.356630) | 0.011224 / 0.007607 (0.003617) | 0.596854 / 0.226044 (0.370810) | 5.940946 / 2.268929 (3.672017) | 2.980194 / 55.444624 (-52.464430) | 2.634961 / 6.876477 (-4.241516) | 2.648160 / 2.142072 (0.506088) | 0.669728 / 4.805227 (-4.135499) | 0.135536 / 6.500664 (-6.365128) | 0.066865 / 0.075469 (-0.008604) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.287151 / 1.841788 (-0.554637) | 14.491681 / 8.074308 (6.417373) | 14.185752 / 10.191392 (3.994360) | 0.129391 / 0.680424 (-0.551032) | 0.016650 / 0.534201 (-0.517551) | 0.380111 / 0.579283 (-0.199172) | 0.392877 / 0.434364 (-0.041487) | 0.439402 / 0.540337 (-0.100935) | 0.530865 / 1.386936 (-0.856071) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9aaee6fd0b2bcbe18e4829602084bcd83d669c5e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011446 / 0.011353 (0.000093) | 0.006623 / 0.011008 (-0.004386) | 0.131915 / 0.038508 (0.093407) | 0.047364 / 0.023109 (0.024255) | 0.369203 / 0.275898 (0.093305) | 0.451509 / 0.323480 (0.128029) | 0.006265 / 0.007986 (-0.001720) | 0.004072 / 0.004328 (-0.000257) | 0.098626 / 0.004250 (0.094375) | 0.079523 / 0.037052 (0.042470) | 0.406038 / 0.258489 (0.147549) | 0.450564 / 0.293841 (0.156723) | 0.050793 / 0.128546 (-0.077753) | 0.014667 / 0.075646 (-0.060979) | 0.401359 / 0.419271 (-0.017913) | 0.072299 / 0.043533 (0.028767) | 0.404456 / 0.255139 (0.149317) | 0.396223 / 0.283200 (0.113023) | 0.037048 / 0.141683 (-0.104635) | 1.869123 / 1.452155 (0.416968) | 1.953621 / 1.492716 (0.460905) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237246 / 0.018006 (0.219240) | 0.533207 / 0.000490 (0.532717) | 0.007392 / 0.000200 (0.007192) | 0.000117 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029458 / 0.037411 (-0.007954) | 0.112438 / 0.014526 (0.097912) | 0.139115 / 0.176557 (-0.037441) | 0.215225 / 0.737135 (-0.521911) | 0.134440 / 0.296338 (-0.161898) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.616783 / 0.215209 (0.401574) | 6.113925 / 2.077655 (4.036270) | 2.403465 / 1.504120 (0.899345) | 1.967523 / 1.541195 (0.426329) | 2.042144 / 1.468490 (0.573654) | 0.927447 / 4.584777 (-3.657330) | 5.280413 / 3.745712 (1.534701) | 2.715335 / 5.269862 (-2.554527) | 1.755640 / 4.565676 (-2.810036) | 0.114370 / 0.424275 (-0.309905) | 0.013583 / 0.007607 (0.005976) | 0.761701 / 0.226044 (0.535657) | 7.466049 / 2.268929 (5.197120) | 3.041943 / 55.444624 (-52.402682) | 2.314477 / 6.876477 (-4.562000) | 2.469285 / 2.142072 (0.327213) | 1.216055 / 4.805227 (-3.589172) | 0.214205 / 6.500664 (-6.286459) | 0.080901 / 0.075469 (0.005432) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.565185 / 1.841788 (-0.276603) | 18.387986 / 8.074308 (10.313678) | 19.665109 / 10.191392 (9.473717) | 0.226670 / 0.680424 (-0.453754) | 0.028430 / 0.534201 (-0.505771) | 0.510526 / 0.579283 (-0.068757) | 0.623178 / 0.434364 (0.188814) | 0.592039 / 0.540337 (0.051702) | 0.728462 / 1.386936 (-0.658474) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009161 / 0.011353 (-0.002192) | 0.004891 / 0.011008 (-0.006117) | 0.106502 / 0.038508 (0.067994) | 0.048234 / 0.023109 (0.025125) | 0.451173 / 0.275898 (0.175275) | 0.557948 / 0.323480 (0.234468) | 0.005350 / 0.007986 (-0.002635) | 0.004559 / 0.004328 (0.000230) | 0.110393 / 0.004250 (0.106142) | 0.060624 / 0.037052 (0.023572) | 0.459265 / 0.258489 (0.200776) | 0.575302 / 0.293841 (0.281461) | 0.051379 / 0.128546 (-0.077167) | 0.015576 / 0.075646 (-0.060070) | 0.116650 / 0.419271 (-0.302621) | 0.065534 / 0.043533 (0.022001) | 0.461431 / 0.255139 (0.206292) | 0.487677 / 0.283200 (0.204477) | 0.037773 / 0.141683 (-0.103910) | 1.992416 / 1.452155 (0.540261) | 1.991280 / 1.492716 (0.498564) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233607 / 0.018006 (0.215601) | 0.507539 / 0.000490 (0.507049) | 0.001307 / 0.000200 (0.001107) | 0.000096 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032897 / 0.037411 (-0.004514) | 0.126549 / 0.014526 (0.112023) | 0.137893 / 0.176557 (-0.038663) | 0.192124 / 0.737135 (-0.545012) | 0.147300 / 0.296338 (-0.149038) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.679371 / 0.215209 (0.464162) | 6.673249 / 2.077655 (4.595595) | 2.979141 / 1.504120 (1.475022) | 2.568789 / 1.541195 (1.027594) | 2.537540 / 1.468490 (1.069050) | 0.973555 / 4.584777 (-3.611222) | 5.313536 / 3.745712 (1.567824) | 2.693283 / 5.269862 (-2.576579) | 1.819483 / 4.565676 (-2.746194) | 0.111644 / 0.424275 (-0.312631) | 0.013218 / 0.007607 (0.005611) | 0.776114 / 0.226044 (0.550070) | 7.758907 / 2.268929 (5.489978) | 3.417611 / 55.444624 (-52.027013) | 2.859502 / 6.876477 (-4.016975) | 2.927726 / 2.142072 (0.785653) | 1.163671 / 4.805227 (-3.641556) | 0.228636 / 6.500664 (-6.272028) | 0.082077 / 0.075469 (0.006607) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.746150 / 1.841788 (-0.095637) | 17.961955 / 8.074308 (9.887647) | 21.590545 / 10.191392 (11.399153) | 0.210017 / 0.680424 (-0.470406) | 0.028435 / 0.534201 (-0.505766) | 0.509253 / 0.579283 (-0.070030) | 0.606993 / 0.434364 (0.172629) | 0.587189 / 0.540337 (0.046851) | 0.684023 / 1.386936 (-0.702913) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9aaee6fd0b2bcbe18e4829602084bcd83d669c5e \"CML watermark\")\n" ]
2023-06-14T16:17:26
2023-06-14T16:33:39
2023-06-14T16:24:39
MEMBER
null
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5957/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5957/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5957", "html_url": "https://github.com/huggingface/datasets/pull/5957", "diff_url": "https://github.com/huggingface/datasets/pull/5957.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5957.patch", "merged_at": "2023-06-14T16:24:39" }
true
https://api.github.com/repos/huggingface/datasets/issues/5956
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5956/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5956/comments
https://api.github.com/repos/huggingface/datasets/issues/5956/events
https://github.com/huggingface/datasets/pull/5956
1,756,959,367
PR_kwDODunzps5S_1o2
5,956
Fix ArrowExamplesIterable.shard_data_sources
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005893 / 0.011353 (-0.005460) | 0.003682 / 0.011008 (-0.007327) | 0.098358 / 0.038508 (0.059850) | 0.028130 / 0.023109 (0.005020) | 0.305960 / 0.275898 (0.030062) | 0.334869 / 0.323480 (0.011390) | 0.003522 / 0.007986 (-0.004463) | 0.003683 / 0.004328 (-0.000645) | 0.079418 / 0.004250 (0.075168) | 0.037662 / 0.037052 (0.000609) | 0.310893 / 0.258489 (0.052404) | 0.341347 / 0.293841 (0.047506) | 0.027450 / 0.128546 (-0.101096) | 0.008381 / 0.075646 (-0.067265) | 0.316020 / 0.419271 (-0.103252) | 0.045079 / 0.043533 (0.001546) | 0.307806 / 0.255139 (0.052667) | 0.331804 / 0.283200 (0.048604) | 0.091806 / 0.141683 (-0.049877) | 1.492611 / 1.452155 (0.040457) | 1.551762 / 1.492716 (0.059046) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201640 / 0.018006 (0.183634) | 0.422776 / 0.000490 (0.422286) | 0.003734 / 0.000200 (0.003535) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025429 / 0.037411 (-0.011982) | 0.104699 / 0.014526 (0.090173) | 0.110505 / 0.176557 (-0.066051) | 0.171252 / 0.737135 (-0.565883) | 0.113131 / 0.296338 (-0.183208) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419914 / 0.215209 (0.204705) | 4.184414 / 2.077655 (2.106760) | 1.999263 / 1.504120 (0.495143) | 1.828669 / 1.541195 (0.287474) | 1.940366 / 1.468490 (0.471876) | 0.556939 / 4.584777 (-4.027838) | 3.389164 / 3.745712 (-0.356548) | 1.796323 / 5.269862 (-3.473538) | 1.048843 / 4.565676 (-3.516833) | 0.067315 / 0.424275 (-0.356960) | 0.011531 / 0.007607 (0.003923) | 0.517226 / 0.226044 (0.291182) | 5.167255 / 2.268929 (2.898326) | 2.431129 / 55.444624 (-53.013495) | 2.133913 / 6.876477 (-4.742564) | 2.359021 / 2.142072 (0.216948) | 0.666390 / 4.805227 (-4.138838) | 0.135147 / 6.500664 (-6.365517) | 0.064855 / 0.075469 (-0.010614) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.166530 / 1.841788 (-0.675258) | 14.060551 / 8.074308 (5.986242) | 14.171663 / 10.191392 (3.980271) | 0.285821 / 0.680424 (-0.394603) | 0.016867 / 0.534201 (-0.517334) | 0.369102 / 0.579283 (-0.210181) | 0.393580 / 0.434364 (-0.040784) | 0.423721 / 0.540337 (-0.116616) | 0.512559 / 1.386936 (-0.874377) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006674 / 0.011353 (-0.004679) | 0.004006 / 0.011008 (-0.007002) | 0.080160 / 0.038508 (0.041652) | 0.032508 / 0.023109 (0.009399) | 0.378168 / 0.275898 (0.102270) | 0.417796 / 0.323480 (0.094316) | 0.003706 / 0.007986 (-0.004280) | 0.002995 / 0.004328 (-0.001333) | 0.079275 / 0.004250 (0.075025) | 0.043690 / 0.037052 (0.006638) | 0.377717 / 0.258489 (0.119228) | 0.439801 / 0.293841 (0.145961) | 0.028438 / 0.128546 (-0.100108) | 0.008661 / 0.075646 (-0.066985) | 0.085280 / 0.419271 (-0.333991) | 0.043716 / 0.043533 (0.000183) | 0.370086 / 0.255139 (0.114947) | 0.403763 / 0.283200 (0.120563) | 0.095022 / 0.141683 (-0.046661) | 1.534376 / 1.452155 (0.082221) | 1.597658 / 1.492716 (0.104942) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240229 / 0.018006 (0.222223) | 0.496281 / 0.000490 (0.495792) | 0.002165 / 0.000200 (0.001965) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025330 / 0.037411 (-0.012081) | 0.102414 / 0.014526 (0.087888) | 0.112733 / 0.176557 (-0.063824) | 0.161181 / 0.737135 (-0.575955) | 0.114196 / 0.296338 (-0.182143) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456808 / 0.215209 (0.241599) | 4.534937 / 2.077655 (2.457283) | 2.318834 / 1.504120 (0.814714) | 2.074085 / 1.541195 (0.532890) | 2.117409 / 1.468490 (0.648919) | 0.559110 / 4.584777 (-4.025667) | 3.371695 / 3.745712 (-0.374017) | 2.543154 / 5.269862 (-2.726708) | 1.360552 / 4.565676 (-3.205125) | 0.067602 / 0.424275 (-0.356674) | 0.011396 / 0.007607 (0.003789) | 0.561666 / 0.226044 (0.335622) | 5.607666 / 2.268929 (3.338737) | 2.802775 / 55.444624 (-52.641849) | 2.486162 / 6.876477 (-4.390315) | 2.390885 / 2.142072 (0.248813) | 0.667407 / 4.805227 (-4.137820) | 0.135948 / 6.500664 (-6.364717) | 0.067272 / 0.075469 (-0.008197) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.279664 / 1.841788 (-0.562124) | 15.188099 / 8.074308 (7.113791) | 14.380355 / 10.191392 (4.188963) | 0.140344 / 0.680424 (-0.540080) | 0.016832 / 0.534201 (-0.517369) | 0.364631 / 0.579283 (-0.214652) | 0.400306 / 0.434364 (-0.034058) | 0.430793 / 0.540337 (-0.109545) | 0.525923 / 1.386936 (-0.861013) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#48ca19cf1f4d1c99765a1f847c1f6b849496d99d \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008502 / 0.011353 (-0.002851) | 0.005946 / 0.011008 (-0.005062) | 0.131279 / 0.038508 (0.092771) | 0.035400 / 0.023109 (0.012291) | 0.423240 / 0.275898 (0.147342) | 0.470248 / 0.323480 (0.146768) | 0.004949 / 0.007986 (-0.003037) | 0.004544 / 0.004328 (0.000215) | 0.106856 / 0.004250 (0.102605) | 0.046579 / 0.037052 (0.009527) | 0.441135 / 0.258489 (0.182646) | 0.470401 / 0.293841 (0.176561) | 0.047231 / 0.128546 (-0.081315) | 0.017278 / 0.075646 (-0.058368) | 0.401937 / 0.419271 (-0.017335) | 0.067151 / 0.043533 (0.023619) | 0.453908 / 0.255139 (0.198769) | 0.422171 / 0.283200 (0.138971) | 0.123583 / 0.141683 (-0.018100) | 1.852895 / 1.452155 (0.400740) | 1.827282 / 1.492716 (0.334566) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246419 / 0.018006 (0.228413) | 0.576930 / 0.000490 (0.576440) | 0.007511 / 0.000200 (0.007312) | 0.000165 / 0.000054 (0.000111) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032732 / 0.037411 (-0.004680) | 0.130266 / 0.014526 (0.115740) | 0.150537 / 0.176557 (-0.026019) | 0.218554 / 0.737135 (-0.518582) | 0.148572 / 0.296338 (-0.147766) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.598611 / 0.215209 (0.383402) | 6.181219 / 2.077655 (4.103564) | 2.473468 / 1.504120 (0.969348) | 2.206374 / 1.541195 (0.665179) | 2.216707 / 1.468490 (0.748217) | 0.981295 / 4.584777 (-3.603482) | 5.716384 / 3.745712 (1.970672) | 5.882327 / 5.269862 (0.612466) | 2.761081 / 4.565676 (-1.804595) | 0.113544 / 0.424275 (-0.310731) | 0.015131 / 0.007607 (0.007524) | 0.850939 / 0.226044 (0.624894) | 8.046611 / 2.268929 (5.777682) | 3.340542 / 55.444624 (-52.104083) | 2.673692 / 6.876477 (-4.202785) | 2.926330 / 2.142072 (0.784257) | 1.176164 / 4.805227 (-3.629064) | 0.226745 / 6.500664 (-6.273919) | 0.085910 / 0.075469 (0.010441) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.483792 / 1.841788 (-0.357995) | 18.895009 / 8.074308 (10.820701) | 20.982461 / 10.191392 (10.791069) | 0.253085 / 0.680424 (-0.427339) | 0.031284 / 0.534201 (-0.502917) | 0.516569 / 0.579283 (-0.062714) | 0.635781 / 0.434364 (0.201417) | 0.604359 / 0.540337 (0.064022) | 0.725278 / 1.386936 (-0.661658) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009220 / 0.011353 (-0.002133) | 0.005792 / 0.011008 (-0.005216) | 0.099795 / 0.038508 (0.061287) | 0.033812 / 0.023109 (0.010703) | 0.459386 / 0.275898 (0.183488) | 0.518067 / 0.323480 (0.194587) | 0.005083 / 0.007986 (-0.002902) | 0.004145 / 0.004328 (-0.000183) | 0.103506 / 0.004250 (0.099255) | 0.050429 / 0.037052 (0.013377) | 0.478149 / 0.258489 (0.219660) | 0.531280 / 0.293841 (0.237440) | 0.047373 / 0.128546 (-0.081173) | 0.013647 / 0.075646 (-0.061999) | 0.115174 / 0.419271 (-0.304098) | 0.061099 / 0.043533 (0.017566) | 0.455002 / 0.255139 (0.199863) | 0.507765 / 0.283200 (0.224565) | 0.112219 / 0.141683 (-0.029464) | 1.873591 / 1.452155 (0.421436) | 1.952061 / 1.492716 (0.459345) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.283587 / 0.018006 (0.265581) | 0.587562 / 0.000490 (0.587073) | 0.001252 / 0.000200 (0.001052) | 0.000095 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032706 / 0.037411 (-0.004705) | 0.137715 / 0.014526 (0.123189) | 0.131932 / 0.176557 (-0.044625) | 0.200042 / 0.737135 (-0.537094) | 0.159327 / 0.296338 (-0.137011) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.624061 / 0.215209 (0.408852) | 6.386235 / 2.077655 (4.308580) | 2.908786 / 1.504120 (1.404666) | 2.589855 / 1.541195 (1.048660) | 2.387988 / 1.468490 (0.919498) | 0.952625 / 4.584777 (-3.632152) | 5.571641 / 3.745712 (1.825929) | 2.711154 / 5.269862 (-2.558708) | 1.788015 / 4.565676 (-2.777662) | 0.104488 / 0.424275 (-0.319787) | 0.015213 / 0.007607 (0.007606) | 0.798446 / 0.226044 (0.572401) | 8.011614 / 2.268929 (5.742686) | 3.711951 / 55.444624 (-51.732673) | 2.896881 / 6.876477 (-3.979595) | 3.172116 / 2.142072 (1.030043) | 1.136816 / 4.805227 (-3.668411) | 0.239254 / 6.500664 (-6.261410) | 0.081136 / 0.075469 (0.005667) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.798246 / 1.841788 (-0.043542) | 19.497108 / 8.074308 (11.422800) | 23.450258 / 10.191392 (13.258866) | 0.250021 / 0.680424 (-0.430403) | 0.029138 / 0.534201 (-0.505063) | 0.532984 / 0.579283 (-0.046299) | 0.638161 / 0.434364 (0.203797) | 0.615720 / 0.540337 (0.075382) | 0.770621 / 1.386936 (-0.616315) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7d8345c5f8a844ff44cfbb30cbda514ffe89bfd7 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009120 / 0.011353 (-0.002233) | 0.005381 / 0.011008 (-0.005627) | 0.139719 / 0.038508 (0.101211) | 0.037229 / 0.023109 (0.014120) | 0.414633 / 0.275898 (0.138734) | 0.480313 / 0.323480 (0.156833) | 0.005027 / 0.007986 (-0.002959) | 0.005015 / 0.004328 (0.000687) | 0.108513 / 0.004250 (0.104263) | 0.056167 / 0.037052 (0.019115) | 0.407588 / 0.258489 (0.149099) | 0.518899 / 0.293841 (0.225058) | 0.048857 / 0.128546 (-0.079689) | 0.013694 / 0.075646 (-0.061952) | 0.418035 / 0.419271 (-0.001237) | 0.067755 / 0.043533 (0.024222) | 0.417740 / 0.255139 (0.162601) | 0.478622 / 0.283200 (0.195422) | 0.118290 / 0.141683 (-0.023393) | 1.901473 / 1.452155 (0.449319) | 1.978126 / 1.492716 (0.485409) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.271960 / 0.018006 (0.253954) | 0.602745 / 0.000490 (0.602255) | 0.005371 / 0.000200 (0.005171) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029620 / 0.037411 (-0.007791) | 0.122402 / 0.014526 (0.107877) | 0.132645 / 0.176557 (-0.043911) | 0.212635 / 0.737135 (-0.524500) | 0.136901 / 0.296338 (-0.159438) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.644017 / 0.215209 (0.428808) | 6.597151 / 2.077655 (4.519496) | 2.454471 / 1.504120 (0.950351) | 2.151357 / 1.541195 (0.610163) | 2.290748 / 1.468490 (0.822258) | 0.970194 / 4.584777 (-3.614583) | 5.475275 / 3.745712 (1.729563) | 2.772658 / 5.269862 (-2.497204) | 1.785311 / 4.565676 (-2.780366) | 0.114503 / 0.424275 (-0.309772) | 0.015374 / 0.007607 (0.007767) | 0.768413 / 0.226044 (0.542368) | 7.956219 / 2.268929 (5.687290) | 3.272138 / 55.444624 (-52.172486) | 2.539638 / 6.876477 (-4.336839) | 2.713526 / 2.142072 (0.571454) | 1.181221 / 4.805227 (-3.624006) | 0.236327 / 6.500664 (-6.264337) | 0.089815 / 0.075469 (0.014345) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.521805 / 1.841788 (-0.319983) | 18.196529 / 8.074308 (10.122221) | 20.287324 / 10.191392 (10.095932) | 0.256959 / 0.680424 (-0.423465) | 0.028846 / 0.534201 (-0.505355) | 0.522354 / 0.579283 (-0.056929) | 0.600216 / 0.434364 (0.165852) | 0.607668 / 0.540337 (0.067331) | 0.762101 / 1.386936 (-0.624835) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009227 / 0.011353 (-0.002126) | 0.005398 / 0.011008 (-0.005610) | 0.094998 / 0.038508 (0.056490) | 0.036633 / 0.023109 (0.013524) | 0.493317 / 0.275898 (0.217419) | 0.517216 / 0.323480 (0.193736) | 0.005510 / 0.007986 (-0.002476) | 0.004249 / 0.004328 (-0.000079) | 0.107936 / 0.004250 (0.103685) | 0.050223 / 0.037052 (0.013171) | 0.580275 / 0.258489 (0.321786) | 0.551477 / 0.293841 (0.257636) | 0.048758 / 0.128546 (-0.079788) | 0.013954 / 0.075646 (-0.061692) | 0.107021 / 0.419271 (-0.312250) | 0.064416 / 0.043533 (0.020884) | 0.485225 / 0.255139 (0.230086) | 0.513862 / 0.283200 (0.230663) | 0.118848 / 0.141683 (-0.022835) | 1.755396 / 1.452155 (0.303241) | 1.970349 / 1.492716 (0.477633) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.290743 / 0.018006 (0.272737) | 0.603293 / 0.000490 (0.602803) | 0.006814 / 0.000200 (0.006614) | 0.000156 / 0.000054 (0.000101) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029862 / 0.037411 (-0.007550) | 0.136530 / 0.014526 (0.122005) | 0.133728 / 0.176557 (-0.042829) | 0.194709 / 0.737135 (-0.542427) | 0.151080 / 0.296338 (-0.145258) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.649202 / 0.215209 (0.433993) | 6.637578 / 2.077655 (4.559923) | 3.040135 / 1.504120 (1.536015) | 2.671308 / 1.541195 (1.130113) | 2.722412 / 1.468490 (1.253922) | 0.953029 / 4.584777 (-3.631748) | 5.805002 / 3.745712 (2.059290) | 5.049939 / 5.269862 (-0.219922) | 2.284053 / 4.565676 (-2.281623) | 0.130399 / 0.424275 (-0.293876) | 0.014726 / 0.007607 (0.007119) | 0.932570 / 0.226044 (0.706526) | 8.576693 / 2.268929 (6.307765) | 4.032738 / 55.444624 (-51.411886) | 3.274715 / 6.876477 (-3.601762) | 3.513788 / 2.142072 (1.371716) | 1.130624 / 4.805227 (-3.674603) | 0.219597 / 6.500664 (-6.281067) | 0.081425 / 0.075469 (0.005956) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.735312 / 1.841788 (-0.106476) | 18.438587 / 8.074308 (10.364279) | 21.582310 / 10.191392 (11.390918) | 0.224040 / 0.680424 (-0.456384) | 0.027590 / 0.534201 (-0.506611) | 0.503598 / 0.579283 (-0.075685) | 0.624379 / 0.434364 (0.190015) | 0.571911 / 0.540337 (0.031574) | 0.723215 / 1.386936 (-0.663721) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9e40d28f2b0060a429c70827191fa5ff3ce8cf27 \"CML watermark\")\n" ]
2023-06-14T13:50:38
2023-06-14T14:43:12
2023-06-14T14:33:45
MEMBER
null
ArrowExamplesIterable.shard_data_sources was outdated I also fixed a warning message by not using format_type= in with_format()
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5956/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5956/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5956", "html_url": "https://github.com/huggingface/datasets/pull/5956", "diff_url": "https://github.com/huggingface/datasets/pull/5956.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5956.patch", "merged_at": "2023-06-14T14:33:45" }
true
https://api.github.com/repos/huggingface/datasets/issues/5955
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5955/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5955/comments
https://api.github.com/repos/huggingface/datasets/issues/5955/events
https://github.com/huggingface/datasets/issues/5955
1,756,827,133
I_kwDODunzps5otw39
5,955
Strange bug in loading local JSON files, using load_dataset
{ "login": "Night-Quiet", "id": 73934131, "node_id": "MDQ6VXNlcjczOTM0MTMx", "avatar_url": "https://avatars.githubusercontent.com/u/73934131?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Night-Quiet", "html_url": "https://github.com/Night-Quiet", "followers_url": "https://api.github.com/users/Night-Quiet/followers", "following_url": "https://api.github.com/users/Night-Quiet/following{/other_user}", "gists_url": "https://api.github.com/users/Night-Quiet/gists{/gist_id}", "starred_url": "https://api.github.com/users/Night-Quiet/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Night-Quiet/subscriptions", "organizations_url": "https://api.github.com/users/Night-Quiet/orgs", "repos_url": "https://api.github.com/users/Night-Quiet/repos", "events_url": "https://api.github.com/users/Night-Quiet/events{/privacy}", "received_events_url": "https://api.github.com/users/Night-Quiet/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "This is the actual error:\r\n```\r\nFailed to read file '/home/lakala/hjc/code/pycode/glm/temp.json' with error <class 'pyarrow.lib.ArrowInvalid'>: cannot mix list and non-list, non-null values\r\n```\r\nWhich means some samples are incorrectly formatted.\r\n\r\nPyArrow, a storage backend that we use under the hood, requires that all the list elements have the same level of nesting (same number of dimensions) or are `None`.\r\n```python\r\nimport pyarrow as pa\r\npa.array([[1, 2, 3], 2]) # ArrowInvalid: cannot mix list and non-list, non-null values\r\npa.array([[1, 2, 3], [2]]) # works\r\n``` ", "@mariosasko \r\nI used the same operation to check the original data before and after slicing.\r\nThis is reflected in my code.\r\n160000 is not a specific number.\r\nI can also get output using 150000.\r\nThis doesn't seem to align very well with what you said.\r\nBecause if only some sample formats are incorrect.\r\nSo there should be an error in one of the front and back slices.\r\nthank you for your reply.", "Our JSON loader does the following in your case:\r\n\r\n```python\r\nimport json\r\nimport pyarrow as pa\r\n\r\nwith open(file, encoding=\"utf-8\") as f:\r\n dataset = json.load(f)\r\nkeys = set().union(*[row.keys() for row in dataset])\r\nmapping = {col: [row.get(col) for row in dataset] for col in keys}\r\npa_table = pa.Table.from_pydict(mapping) # the ArrowInvalid error comes from here\r\n```\r\n\r\nSo if this code throws an error with correctly-formatted JSON, then this is an Arrow bug and should be reported in their repo.\r\n\r\n> I used the same operation to check the original data before and after slicing.\r\nThis is reflected in my code.\r\n160000 is not a specific number.\r\nI can also get output using 150000.\r\nThis doesn't seem to align very well with what you said.\r\nBecause if only some sample formats are incorrect.\r\nSo there should be an error in one of the front and back slices.\r\n\r\nYou should shuffle the data to make sure that's not the case", "@mariosasko \r\nThank you.\r\nI will try again." ]
2023-06-14T12:46:00
2023-06-16T09:15:16
null
NONE
null
### Describe the bug I am using 'load_dataset 'loads a JSON file, but I found a strange bug: an error will be reported when the length of the JSON file exceeds 160000 (uncertain exact number). I have checked the data through the following code and there are no issues. So I cannot determine the true reason for this error. The data is a list containing a dictionary. As follows: [ {'input': 'someting...', 'target': 'someting...', 'type': 'someting...', 'history': ['someting...', ...]}, ... ] ### Steps to reproduce the bug ``` import json from datasets import load_dataset path = "target.json" temp_path = "temp.json" with open(path, "r") as f: data = json.load(f) print(f"\n-------the JSON file length is: {len(data)}-------\n") with open(temp_path, "w") as f: json.dump(data[:160000], f) dataset = load_dataset("json", data_files=temp_path) print("\n-------This works when the JSON file length is 160000-------\n") with open(temp_path, "w") as f: json.dump(data[160000:], f) dataset = load_dataset("json", data_files=temp_path) print("\n-------This works and eliminates data issues-------\n") with open(temp_path, "w") as f: json.dump(data[:170000], f) dataset = load_dataset("json", data_files=temp_path) ``` ### Expected behavior ``` -------the JSON file length is: 173049------- Downloading and preparing dataset json/default to /root/.cache/huggingface/datasets/json/default-acf3c7f418c5f4b4/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4... Downloading data files: 100%|███████████████████| 1/1 [00:00<00:00, 3328.81it/s] Extracting data files: 100%|█████████████████████| 1/1 [00:00<00:00, 639.47it/s] Dataset json downloaded and prepared to /root/.cache/huggingface/datasets/json/default-acf3c7f418c5f4b4/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4. Subsequent calls will reuse this data. 100%|████████████████████████████████████████████| 1/1 [00:00<00:00, 265.85it/s] -------This works when the JSON file length is 160000------- Downloading and preparing dataset json/default to /root/.cache/huggingface/datasets/json/default-a42f04b263ceea6a/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4... Downloading data files: 100%|███████████████████| 1/1 [00:00<00:00, 2038.05it/s] Extracting data files: 100%|█████████████████████| 1/1 [00:00<00:00, 794.83it/s] Dataset json downloaded and prepared to /root/.cache/huggingface/datasets/json/default-a42f04b263ceea6a/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4. Subsequent calls will reuse this data. 100%|████████████████████████████████████████████| 1/1 [00:00<00:00, 681.00it/s] -------This works and eliminates data issues------- Downloading and preparing dataset json/default to /root/.cache/huggingface/datasets/json/default-63f391c89599c7b0/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4... Downloading data files: 100%|███████████████████| 1/1 [00:00<00:00, 3682.44it/s] Extracting data files: 100%|█████████████████████| 1/1 [00:00<00:00, 788.70it/s] Generating train split: 0 examples [00:00, ? examples/s]Failed to read file '/home/lakala/hjc/code/pycode/glm/temp.json' with error <class 'pyarrow.lib.ArrowInvalid'>: cannot mix list and non-list, non-null values Traceback (most recent call last): File "/home/lakala/conda/envs/glm/lib/python3.8/site-packages/datasets/builder.py", line 1858, in _prepare_split_single for _, table in generator: File "/home/lakala/conda/envs/glm/lib/python3.8/site-packages/datasets/packaged_modules/json/json.py", line 146, in _generate_tables raise ValueError(f"Not able to read records in the JSON file at {file}.") from None ValueError: Not able to read records in the JSON file at /home/lakala/hjc/code/pycode/glm/temp.json. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/lakala/hjc/code/pycode/glm/test.py", line 22, in <module> dataset = load_dataset("json", data_files=temp_path) File "/home/lakala/conda/envs/glm/lib/python3.8/site-packages/datasets/load.py", line 1797, in load_dataset builder_instance.download_and_prepare( File "/home/lakala/conda/envs/glm/lib/python3.8/site-packages/datasets/builder.py", line 890, in download_and_prepare self._download_and_prepare( File "/home/lakala/conda/envs/glm/lib/python3.8/site-packages/datasets/builder.py", line 985, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/lakala/conda/envs/glm/lib/python3.8/site-packages/datasets/builder.py", line 1746, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/home/lakala/conda/envs/glm/lib/python3.8/site-packages/datasets/builder.py", line 1891, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.builder.DatasetGenerationError: An error occurred while generating the dataset ``` ### Environment info ``` Ubuntu==22.04 python==3.8 pytorch-transformers==1.2.0 transformers== 4.27.1 datasets==2.12.0 numpy==1.24.3 pandas==1.5.3 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5955/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5955/timeline
null
null
null
null
false
End of preview. Expand in Data Studio

Dataset Card for "github-issues"

More Information needed

Downloads last month
17