File size: 5,764 Bytes
9b2942b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8362f
9b2942b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NFH: Numeric Fused-Heads."""


import csv
import json

import datasets


_CITATION = """\
@article{elazar_head,
    author = {Elazar, Yanai and Goldberg, Yoav},
    title = {Where’s My Head? Definition, Data Set, and Models for Numeric Fused-Head Identification and Resolution},
    journal = {Transactions of the Association for Computational Linguistics},
    volume = {7},
    number = {},
    pages = {519-535},
    year = {2019},
    doi = {10.1162/tacl\\_a\\_00280},
    URL = {https://doi.org/10.1162/tacl_a_00280},
}
"""

_DESCRIPTION = """\
Fused Head constructions are noun phrases in which the head noun is \
missing and is said to be "fused" with its dependent modifier. This \
missing information is implicit and is important for sentence understanding.\
The missing heads are easily filled in by humans,  but pose a challenge for \
computational models.

For example, in the sentence: "I bought 5 apples but got only 4.", 4 is a \
Fused-Head, and the missing head is apples, which appear earlier in the sentence.

This is a crowd-sourced dataset of 10k numerical fused head examples (1M tokens).
"""

_HOMEPAGE = "https://nlp.biu.ac.il/~lazary/fh/"

_LICENSE = "MIT"

_URLs = {
    "identification": {
        "train": "https://raw.githubusercontent.com/yanaiela/num_fh/master/data/identification/processed/train.tsv",
        "test": "https://raw.githubusercontent.com/yanaiela/num_fh/master/data/identification/processed/test.tsv",
        "dev": "https://raw.githubusercontent.com/yanaiela/num_fh/master/data/identification/processed/dev.tsv",
    },
    "resolution": {
        "train": "https://raw.githubusercontent.com/yanaiela/num_fh/master/data/resolution/processed/nfh_train.jsonl",
        "test": "https://raw.githubusercontent.com/yanaiela/num_fh/master/data/resolution/processed/nfh_test.jsonl",
        "dev": "https://raw.githubusercontent.com/yanaiela/num_fh/master/data/resolution/processed/nfh_dev.jsonl",
    },
}


class NumericFusedHead(datasets.GeneratorBasedBuilder):
    """NFH: Numeric Fused-Heads"""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="identification", description="Identify NFH anchors in a sentence"),
        datasets.BuilderConfig(name="resolution", description="Identify the head for the numeric anchor"),
    ]

    def _info(self):
        if self.config.name == "identification":
            features = datasets.Features(
                {
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "start_index": datasets.Value("int32"),
                    "end_index": datasets.Value("int32"),
                    "label": datasets.features.ClassLabel(names=["neg", "pos"]),
                }
            )
        else:
            features = datasets.Features(
                {
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "line_indices": datasets.Sequence(datasets.Value("int32")),
                    "head": datasets.Sequence(datasets.Value("string")),
                    "speakers": datasets.Sequence(datasets.Value("string")),
                    "anchors_indices": datasets.Sequence(datasets.Value("int32")),
                }
            )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_files = dl_manager.download_and_extract(_URLs[self.config.name])
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
        ]

    def _generate_examples(self, filepath):
        """Yields examples."""
        with open(filepath, encoding="utf-8") as f:
            if self.config.name == "identification":
                r = csv.DictReader(f, delimiter="\t")
                for id_, row in enumerate(r):
                    data = {
                        "tokens": row["text"].split("_SEP_"),
                        "start_index": row["ind_s"],
                        "end_index": row["ind_e"],
                        "label": "neg" if row["y"] == "0" else "pos",
                    }
                    yield id_, data
            else:
                for id_, row in enumerate(f):
                    data = json.loads(row)
                    yield id_, {
                        "tokens": data["tokens"],
                        "line_indices": data["line_indices"],
                        "head": [str(s) for s in data["head"]],
                        "speakers": [str(s) for s in data["speakers"]],
                        "anchors_indices": data["anchors_indices"],
                    }