hexsha
stringlengths
40
40
size
int64
2
1.05M
ext
stringclasses
9 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
193
max_stars_repo_name
stringlengths
6
109
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequence
max_stars_count
int64
1
36.6k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
193
max_issues_repo_name
stringlengths
6
109
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequence
max_issues_count
int64
1
29.8k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
193
max_forks_repo_name
stringlengths
6
109
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequence
max_forks_count
int64
1
11.2k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
2
1.05M
avg_line_length
float64
1
404k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
f70001f658d4dfaa72dd4f0d1b3176492f6658bb
6,442
py
Python
spider/openwrt.py
CNDB/CNDB
2e3a41111f604cf2f4f22a7c9370bb3f753e3e88
[ "BSD-3-Clause" ]
null
null
null
spider/openwrt.py
CNDB/CNDB
2e3a41111f604cf2f4f22a7c9370bb3f753e3e88
[ "BSD-3-Clause" ]
null
null
null
spider/openwrt.py
CNDB/CNDB
2e3a41111f604cf2f4f22a7c9370bb3f753e3e88
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # #*** <License> ************************************************************# # This module is part of the repository CNDB. # # This module is licensed under the terms of the BSD 3-Clause License # <http://www.c-tanzer.at/license/bsd_3c.html>. # #*** </License> ***********************************************************# from _TFL.pyk import pyk from rsclib.HTML_Parse import tag, Page_Tree from rsclib.autosuper import autosuper from spider.common import Interface, Inet4, Inet6, unroutable from spider.common import WLAN_Config from spider.luci import Version_Mixin class Status (Page_Tree, Version_Mixin) : url = 'cgi-bin/luci/freifunk/status/status' retries = 2 timeout = 10 html_charset = 'utf-8' # force utf-8 encoding wl_names = dict \ ( ssid = 'ssid' , _bsiid = 'bssid' , channel = 'channel' , mode = 'mode' ) def parse (self) : root = self.tree.getroot () self.wlans = [] self.routes = {} for div in root.findall (".//%s" % tag ("div")) : id = div.get ('id') if id == 'cbi-wireless' : wlan_div = div elif id == 'cbi-routes' : route_div = div self.try_get_version (div) for d in self.tbl_iter (wlan_div) : for k, newkey in pyk.iteritems (self.wl_names) : if k in d : d [newkey] = d [k] wl = WLAN_Config (** d) self.wlans.append (wl) for d in self.tbl_iter (route_div) : iface = d.get ('iface') gw = d.get ('gateway') if iface and gw : self.routes [iface] = gw self.set_version (root) # end def parse def tbl_iter (self, div) : tbl = div.find (".//%s" % tag ("table")) assert tbl.get ('class') == 'cbi-section-table' d = {} for tr in tbl : if 'cbi-section-table-row' not in tr.get ('class').split () : continue for input in tr.findall (".//%s" % tag ('input')) : name = input.get ('id').split ('.') [-1] val = input.get ('value') d [name] = val if not d : continue yield d # end def tbl_iter # end class Status class Table_Iter (Page_Tree) : def table_iter (self) : root = self.tree.getroot () for div in root.findall (".//%s" % tag ("div")) : if div.get ('id') == 'maincontent' : break tbl = div.find (".//%s" % tag ("table")) if tbl is None : return for tr in tbl : if tr [0].tag == tag ('th') : continue yield (self.tree.get_text (x) for x in tr) # end def table_iter # end class Table_Iter class OLSR_Connections (Table_Iter) : url = 'cgi-bin/luci/freifunk/olsr/' retries = 2 timeout = 10 html_charset = 'utf-8' # force utf-8 encoding def parse (self) : self.neighbors = {} for l in self.table_iter () : neighbor, ip, lq, nlq, etx = l lq, nlq, etx = (float (x) for x in (lq, nlq, etx)) self.neighbors [neighbor] = [ip, lq, nlq, etx] # end def parse # end class OLSR_Connections class OLSR_Routes (Table_Iter) : url = 'cgi-bin/luci/freifunk/olsr/routes' retries = 2 timeout = 10 html_charset = 'utf-8' # force utf-8 encoding def parse (self) : self.iface_by_gw = {} for l in self.table_iter () : announced, gw, iface, metric, etx = l if gw in self.iface_by_gw : assert iface == self.iface_by_gw [gw] else : self.iface_by_gw [gw] = iface # end def parse # end class OLSR_Routes class OpenWRT (autosuper) : def __init__ (self, site, request) : self.site = site self.request = request if 'interfaces' in self.request or 'ips' in self.request : st = Status (site = site) conn = OLSR_Connections (site = site) route = OLSR_Routes (site = site) self.version = st.version assert len (st.wlans) <= 1 interfaces = {} ips = {} count = 0 for gw, ifname in pyk.iteritems (route.iface_by_gw) : ip, lq, nlq, etx = conn.neighbors [gw] i4 = Inet4 (ip, None, None, iface = ifname) ips [i4] = 1 is_wlan = True if lq == nlq == etx == 1.0 : is_wlan = False if ifname in interfaces : iface = interfaces [ifname] if not iface.is_wlan and is_wlan : iface.is_wlan = True iface.wlan_info = st.wlans [0] else : iface = Interface (count, ifname, None) iface.is_wlan = is_wlan if is_wlan : iface.wlan_info = st.wlans [0] count += 1 interfaces [ifname] = iface if i4 not in iface.inet4 : iface.append_inet4 (i4) wl_if = None for iface in pyk.itervalues (interfaces) : if iface.is_wlan : if wl_if : m = "Duplicate wlan: %s/%s" % (iface.name, wl_if.name) raise ValueError (m) wl_if = iface # check own ip n = 'unknown' i4 = Inet4 (self.request ['ip'], None, None, iface = n) if i4 not in ips : assert n not in interfaces iface = interfaces [n] = Interface (count, n, None) iface.append_inet4 (i4) iface.is_wlan = False if not wl_if and st.wlans : iface.is_wlan = True iface.wlan_info = st.wlans [0] ips [i4] = True self.request ['ips'] = ips self.request ['interfaces'] = interfaces self.request ['version'] = st.version # end def __init__ # end class OpenWRT
34.449198
78
0.472369
f7001ad17b839c3551d7b4c8edcc8b1d1d322b6f
6,412
py
Python
asv/plugins/conda.py
prisae/asv
57c386d7cc27f91ecd8daf1ad2e0413f2efdd39c
[ "BSD-3-Clause" ]
2
2019-08-18T11:05:25.000Z
2019-11-17T02:07:18.000Z
asv/plugins/conda.py
prisae/asv
57c386d7cc27f91ecd8daf1ad2e0413f2efdd39c
[ "BSD-3-Clause" ]
1
2019-02-19T17:11:38.000Z
2019-02-19T17:11:38.000Z
asv/plugins/conda.py
prisae/asv
57c386d7cc27f91ecd8daf1ad2e0413f2efdd39c
[ "BSD-3-Clause" ]
null
null
null
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- from __future__ import absolute_import, division, unicode_literals, print_function import re import os import tempfile import six from .. import environment from ..console import log from .. import util WIN = (os.name == "nt") def _find_conda(): """Find the conda executable robustly across conda versions. Returns ------- conda : str Path to the conda executable. Raises ------ IOError If the executable cannot be found in either the CONDA_EXE environment variable or in the PATH. Notes ----- In POSIX platforms in conda >= 4.4, conda can be set up as a bash function rather than an executable. (This is to enable the syntax ``conda activate env-name``.) In this case, the environment variable ``CONDA_EXE`` contains the path to the conda executable. In other cases, we use standard search for the appropriate name in the PATH. See https://github.com/airspeed-velocity/asv/issues/645 for more details. """ if 'CONDA_EXE' in os.environ: conda = os.environ['CONDA_EXE'] else: conda = util.which('conda') return conda class Conda(environment.Environment): """ Manage an environment using conda. Dependencies are installed using ``conda``. The benchmarked project is installed using ``pip`` (since ``conda`` doesn't have a method to install from an arbitrary ``setup.py``). """ tool_name = "conda" _matches_cache = {} def __init__(self, conf, python, requirements): """ Parameters ---------- conf : Config instance python : str Version of Python. Must be of the form "MAJOR.MINOR". requirements : dict Dictionary mapping a PyPI package name to a version identifier string. """ self._python = python self._requirements = requirements self._conda_channels = conf.conda_channels super(Conda, self).__init__(conf, python, requirements) @classmethod def matches(cls, python): # Calling conda can take a long time, so remember the result if python not in cls._matches_cache: cls._matches_cache[python] = cls._matches(python) return cls._matches_cache[python] @classmethod def _matches(cls, python): if not re.match(r'^[0-9].*$', python): # The python name should be a version number return False try: conda = _find_conda() except IOError: return False else: # This directory never gets created, since we're just # doing a dry run below. All it needs to be is something # that doesn't already exist. path = os.path.join(tempfile.gettempdir(), 'check') # Check that the version number is valid try: util.check_call([ conda, 'create', '--yes', '-p', path, 'python={0}'.format(python), '--dry-run'], display_error=False, dots=False) except util.ProcessError: return False else: return True def _setup(self): try: conda = _find_conda() except IOError as e: raise util.UserError(str(e)) log.info("Creating conda environment for {0}".format(self.name)) # create a temporary environment.yml file # and use that to generate the env for benchmarking env_file = tempfile.NamedTemporaryFile(mode='w', delete=False, suffix=".yml") try: env_file.write('name: {0}\n' 'channels:\n'.format(self.name)) env_file.writelines((' - %s\n' % ch for ch in self._conda_channels)) env_file.write('dependencies:\n' ' - python={0}\n' ' - wheel\n' ' - pip\n'.format(self._python)) # categorize & write dependencies based on pip vs. conda conda_args, pip_args = self._get_requirements(conda) env_file.writelines((' - %s\n' % s for s in conda_args)) if pip_args: # and now specify the packages that are to be installed in # the pip subsection env_file.write(' - pip:\n') env_file.writelines((' - %s\n' % s for s in pip_args)) env_file.close() util.check_output([conda] + ['env', 'create', '-f', env_file.name, '-p', self._path, '--force']) except Exception as exc: if os.path.isfile(env_file.name): with open(env_file.name, 'r') as f: text = f.read() log.info("conda env create failed: in {} with:\n{}".format(self._path, text)) raise finally: os.unlink(env_file.name) def _get_requirements(self, conda): if self._requirements: # retrieve and return all conda / pip dependencies conda_args = [] pip_args = [] for key, val in six.iteritems(self._requirements): if key.startswith('pip+'): if val: pip_args.append("{0}=={1}".format(key[4:], val)) else: pip_args.append(key[4:]) else: if val: conda_args.append("{0}={1}".format(key, val)) else: conda_args.append(key) return conda_args, pip_args else: return [], [] def run(self, args, **kwargs): log.debug("Running '{0}' in {1}".format(' '.join(args), self.name)) return self.run_executable('python', args, **kwargs) def run_executable(self, executable, args, **kwargs): # Conda doesn't guarantee that user site directories are excluded kwargs["env"] = dict(kwargs.pop("env", os.environ), PYTHONNOUSERSITE=str("True")) return super(Conda, self).run_executable(executable, args, **kwargs)
33.570681
93
0.547723
f700701e51582a6f314450ea9547949094b4db62
3,429
py
Python
fineract/objects/group.py
mobidevke/py-fineract
712b0c20686accd7d7e0a2356ccaf59c5fe4f7dd
[ "Apache-2.0" ]
7
2019-03-11T16:17:33.000Z
2020-10-22T21:57:51.000Z
fineract/objects/group.py
mobidevke/py-fineract
712b0c20686accd7d7e0a2356ccaf59c5fe4f7dd
[ "Apache-2.0" ]
3
2019-11-05T20:22:16.000Z
2019-12-11T17:09:04.000Z
fineract/objects/group.py
mobidevke/py-fineract
712b0c20686accd7d7e0a2356ccaf59c5fe4f7dd
[ "Apache-2.0" ]
2
2020-11-19T16:00:36.000Z
2021-11-19T09:36:13.000Z
from fineract.objects.fineract_object import DataFineractObject from fineract.objects.types import Type class Group(DataFineractObject): """ This class represents a Group. """ def __repr__(self): return self.get__repr__({'group_id': self.id}) def _init_attributes(self): self.id = None self.account_no = None self.external_id = None self.name = None self.status = None self.active = None self.activation_date = None self.office_id = None self.office_name = None self.hierarchy = None def _use_attributes(self, attributes): self.id = attributes.get('id', None) self.account_no = attributes.get('accountNo', None) self.external_id = attributes.get('externalId', None) self.name = attributes.get('name', None) self.status = self._make_fineract_object(GroupStatus, attributes.get('status', None)) self.active = attributes.get('active', None) self.activation_date = self._make_date_object(attributes.get('activationDate', None)) self.office_id = attributes.get('officeId', None) self.office_name = attributes.get('officeName', None) self.hierarchy = attributes.get('hierarchy', None) def add_members(self, members_list): params = { 'clientMembers': members_list } data = self.request_handler.make_request( 'POST', '/groups/{}?command=associateClients'.format(self.id), json=params ) return data['groupId'] == self.id def remove_members(self, members_list): params = { 'clientMembers': members_list } data = self.request_handler.make_request( 'POST', '/groups/{}?command=disassociateClients'.format(self.id), json=params ) return data['groupId'] == self.id @classmethod def create(cls, request_handler, name, office_id, active=True, activation_date=None): """Create a group :param request_handler: :param name: :param office_id: :param active: :param activation_date: :rtype: :class:`fineract.objects.group.Group` """ data = { 'name': name, 'officeId': office_id, 'active': active, 'activationDate': activation_date or cls._get_current_date() } res = request_handler.make_request( 'POST', '/groups', json=data ) group_id = res['groupId'] return cls(request_handler, request_handler.make_request( 'GET', '/groups/{}'.format(group_id) ), False) @classmethod def get_group_by_name(cls, request_handler, name): """Get a group by name :param request_handler: :param name: :rtype: :class:`fineract.objects.group.Group` """ data = request_handler.make_request( 'GET', '/groups' ) if data: for item in data: if item['name'] == name: print(item) return cls(request_handler, item, False) return None class GroupStatus(Type): """ This class represents a Group status. """ pass
29.307692
93
0.567221
f7007e7d6cadbb4707818ec05e6fcbc50ba52dfb
2,656
py
Python
sysinv/sysinv/sysinv/sysinv/common/service.py
starlingx-staging/stx-config
ccbf0392d1941e7cad6673f6351bd905a5a5d419
[ "Apache-2.0" ]
null
null
null
sysinv/sysinv/sysinv/sysinv/common/service.py
starlingx-staging/stx-config
ccbf0392d1941e7cad6673f6351bd905a5a5d419
[ "Apache-2.0" ]
null
null
null
sysinv/sysinv/sysinv/sysinv/common/service.py
starlingx-staging/stx-config
ccbf0392d1941e7cad6673f6351bd905a5a5d419
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- encoding: utf-8 -*- # # Copyright © 2012 eNovance <licensing@enovance.com> # # Author: Julien Danjou <julien@danjou.info> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import socket from oslo_config import cfg from sysinv.openstack.common import context from sysinv.openstack.common import log from sysinv.openstack.common import periodic_task from sysinv.openstack.common import rpc from sysinv.openstack.common.rpc import service as rpc_service from oslo_service import service cfg.CONF.register_opts([ cfg.IntOpt('periodic_interval', default=60, help='seconds between running periodic tasks'), cfg.StrOpt('host', default=socket.getfqdn(), help='Name of this node. This can be an opaque identifier. ' 'It is not necessarily a hostname, FQDN, or IP address. ' 'However, the node name must be valid within ' 'an AMQP key, and if using ZeroMQ, a valid ' 'hostname, FQDN, or IP address'), ]) CONF = cfg.CONF class PeriodicService(rpc_service.Service, periodic_task.PeriodicTasks): def start(self): super(PeriodicService, self).start() admin_context = context.RequestContext('admin', 'admin', is_admin=True) self.tg.add_timer(cfg.CONF.periodic_interval, self.manager.periodic_tasks, context=admin_context) def prepare_service(argv=None): if argv is None: argv = [] rpc.set_defaults(control_exchange='sysinv') cfg.set_defaults(log.log_opts, default_log_levels=['amqplib=WARN', 'qpid.messaging=INFO', 'sqlalchemy=WARN', 'keystoneclient=INFO', 'stevedore=INFO', 'eventlet.wsgi.server=WARN' ]) cfg.CONF(argv[1:], project='sysinv') log.setup('sysinv') def process_launcher(): return service.ProcessLauncher(CONF)
34.947368
79
0.622364
f7008bf87b5a1c0780d7272b314fa3142ffb3ef3
18,984
py
Python
netbox_agent/server.py
freberkivra/netbox-agent
5f0aae6c011cd43f7d9e6d322f90a6b0f5195c61
[ "Apache-2.0" ]
24
2019-08-05T15:14:20.000Z
2020-02-02T11:05:45.000Z
netbox_agent/server.py
freberkivra/netbox-agent
5f0aae6c011cd43f7d9e6d322f90a6b0f5195c61
[ "Apache-2.0" ]
39
2019-08-04T18:12:07.000Z
2020-01-30T21:42:38.000Z
netbox_agent/server.py
freberkivra/netbox-agent
5f0aae6c011cd43f7d9e6d322f90a6b0f5195c61
[ "Apache-2.0" ]
8
2019-09-03T20:51:22.000Z
2020-01-15T06:00:23.000Z
import netbox_agent.dmidecode as dmidecode from netbox_agent.config import config from netbox_agent.config import netbox_instance as nb from netbox_agent.inventory import Inventory from netbox_agent.location import Datacenter, Rack, Tenant from netbox_agent.misc import create_netbox_tags, get_device_role, get_device_type, get_device_platform from netbox_agent.network import ServerNetwork from netbox_agent.power import PowerSupply from pprint import pprint import subprocess import logging import socket import sys class ServerBase(): def __init__(self, dmi=None): if dmi: self.dmi = dmi else: self.dmi = dmidecode.parse() self.baseboard = dmidecode.get_by_type(self.dmi, 'Baseboard') self.bios = dmidecode.get_by_type(self.dmi, 'BIOS') self.chassis = dmidecode.get_by_type(self.dmi, 'Chassis') self.system = dmidecode.get_by_type(self.dmi, 'System') self.device_platform = get_device_platform(config.device.platform) self.network = None self.tags = list(set([ x.strip() for x in config.device.tags.split(',') if x.strip() ])) if config.device.tags else [] self.nb_tags = list(create_netbox_tags(self.tags)) config_cf = set([ f.strip() for f in config.device.custom_fields.split(",") if f.strip() ]) self.custom_fields = {} self.custom_fields.update(dict([ (k.strip(), v.strip()) for k, v in [f.split("=", 1) for f in config_cf] ])) def get_tenant(self): tenant = Tenant() return tenant.get() def get_netbox_tenant(self): tenant = self.get_tenant() if tenant is None: return None nb_tenant = nb.tenancy.tenants.get( slug=self.get_tenant() ) return nb_tenant def get_datacenter(self): dc = Datacenter() return dc.get() def get_netbox_datacenter(self): dc = self.get_datacenter() if dc is None: logging.error("Specificing a datacenter (Site) is mandatory in Netbox") sys.exit(1) nb_dc = nb.dcim.sites.get( slug=dc, ) if nb_dc is None: logging.error("Site (slug: {}) has not been found".format(dc)) sys.exit(1) return nb_dc def update_netbox_location(self, server): dc = self.get_datacenter() nb_rack = self.get_netbox_rack() nb_dc = self.get_netbox_datacenter() update = False if dc and server.site and server.site.slug != nb_dc.slug: logging.info('Datacenter location has changed from {} to {}, updating'.format( server.site.slug, nb_dc.slug, )) update = True server.site = nb_dc.id if ( server.rack and nb_rack and server.rack.id != nb_rack.id ): logging.info('Rack location has changed from {} to {}, updating'.format( server.rack, nb_rack, )) update = True server.rack = nb_rack if nb_rack is None: server.face = None server.position = None return update, server def update_netbox_expansion_location(self, server, expansion): update = False if expansion.tenant != server.tenant: expansion.tenant = server.tenant update = True if expansion.site != server.site: expansion.site = server.site update = True if expansion.rack != server.rack: expansion.rack = server.rack update = True return update def get_rack(self): rack = Rack() return rack.get() def get_netbox_rack(self): rack = self.get_rack() datacenter = self.get_netbox_datacenter() if not rack: return None if rack and not datacenter: logging.error("Can't get rack if no datacenter is configured or found") sys.exit(1) return nb.dcim.racks.get( name=rack, site_id=datacenter.id, ) def get_product_name(self): """ Return the Chassis Name from dmidecode info """ return self.system[0]['Product Name'].strip() def get_service_tag(self): """ Return the Service Tag from dmidecode info """ return self.system[0]['Serial Number'].strip() def get_expansion_service_tag(self): """ Return the virtual Service Tag from dmidecode info host with 'expansion' """ return self.system[0]['Serial Number'].strip() + " expansion" def get_hostname(self): if config.hostname_cmd is None: return '{}'.format(socket.gethostname()) return subprocess.getoutput(config.hostname_cmd) def is_blade(self): raise NotImplementedError def get_blade_slot(self): raise NotImplementedError def get_chassis(self): raise NotImplementedError def get_chassis_name(self): raise NotImplementedError def get_chassis_service_tag(self): raise NotImplementedError def get_bios_version(self): raise NotImplementedError def get_bios_version_attr(self): raise NotImplementedError def get_bios_release_date(self): raise NotImplementedError def get_power_consumption(self): raise NotImplementedError def get_expansion_product(self): raise NotImplementedError def _netbox_create_chassis(self, datacenter, tenant, rack): device_type = get_device_type(self.get_chassis()) device_role = get_device_role(config.device.chassis_role) serial = self.get_chassis_service_tag() logging.info('Creating chassis blade (serial: {serial})'.format( serial=serial)) new_chassis = nb.dcim.devices.create( name=self.get_chassis_name(), device_type=device_type.id, serial=serial, device_role=device_role.id, site=datacenter.id if datacenter else None, tenant=tenant.id if tenant else None, rack=rack.id if rack else None, tags=[{'name': x} for x in self.tags], custom_fields=self.custom_fields, ) return new_chassis def _netbox_create_blade(self, chassis, datacenter, tenant, rack): device_role = get_device_role(config.device.blade_role) device_type = get_device_type(self.get_product_name()) serial = self.get_service_tag() hostname = self.get_hostname() logging.info( 'Creating blade (serial: {serial}) {hostname} on chassis {chassis_serial}'.format( serial=serial, hostname=hostname, chassis_serial=chassis.serial )) new_blade = nb.dcim.devices.create( name=hostname, serial=serial, device_role=device_role.id, device_type=device_type.id, parent_device=chassis.id, site=datacenter.id if datacenter else None, tenant=tenant.id if tenant else None, rack=rack.id if rack else None, tags=[{'name': x} for x in self.tags], custom_fields=self.custom_fields, ) return new_blade def _netbox_create_blade_expansion(self, chassis, datacenter, tenant, rack): device_role = get_device_role(config.device.blade_role) device_type = get_device_type(self.get_expansion_product()) serial = self.get_expansion_service_tag() hostname = self.get_hostname() + " expansion" logging.info( 'Creating expansion (serial: {serial}) {hostname} on chassis {chassis_serial}'.format( serial=serial, hostname=hostname, chassis_serial=chassis.serial )) new_blade = nb.dcim.devices.create( name=hostname, serial=serial, device_role=device_role.id, device_type=device_type.id, parent_device=chassis.id, site=datacenter.id if datacenter else None, tenant=tenant.id if tenant else None, rack=rack.id if rack else None, tags=[{'name': x} for x in self.tags], ) return new_blade def _netbox_deduplicate_server(self): serial = self.get_service_tag() hostname = self.get_hostname() server = nb.dcim.devices.get(name=hostname) if server and server.serial != serial: server.delete() def _netbox_create_server(self, datacenter, tenant, rack): device_role = get_device_role(config.device.server_role) device_type = get_device_type(self.get_product_name()) if not device_type: raise Exception('Chassis "{}" doesn\'t exist'.format(self.get_chassis())) serial = self.get_service_tag() hostname = self.get_hostname() logging.info('Creating server (serial: {serial}) {hostname}'.format( serial=serial, hostname=hostname)) new_server = nb.dcim.devices.create( name=hostname, serial=serial, device_role=device_role.id, device_type=device_type.id, platform=self.device_platform, site=datacenter.id if datacenter else None, tenant=tenant.id if tenant else None, rack=rack.id if rack else None, tags=[{'name': x} for x in self.tags], ) return new_server def get_netbox_server(self, expansion=False): if expansion is False: return nb.dcim.devices.get(serial=self.get_service_tag()) else: return nb.dcim.devices.get(serial=self.get_expansion_service_tag()) def _netbox_set_or_update_blade_slot(self, server, chassis, datacenter): # before everything check if right chassis actual_device_bay = server.parent_device.device_bay \ if server.parent_device else None actual_chassis = actual_device_bay.device \ if actual_device_bay else None slot = self.get_blade_slot() if actual_chassis and \ actual_chassis.serial == chassis.serial and \ actual_device_bay.name == slot: return real_device_bays = nb.dcim.device_bays.filter( device_id=chassis.id, name=slot, ) real_device_bays = nb.dcim.device_bays.filter( device_id=chassis.id, name=slot, ) if real_device_bays: logging.info( 'Setting device ({serial}) new slot on {slot} ' '(Chassis {chassis_serial})..'.format( serial=server.serial, slot=slot, chassis_serial=chassis.serial )) # reset actual device bay if set if actual_device_bay: # Forces the evaluation of the installed_device attribute to # workaround a bug probably due to lazy loading optimization # that prevents the value change detection actual_device_bay.installed_device actual_device_bay.installed_device = None actual_device_bay.save() # setup new device bay real_device_bay = next(real_device_bays) real_device_bay.installed_device = server real_device_bay.save() else: logging.error('Could not find slot {slot} for chassis'.format( slot=slot )) def _netbox_set_or_update_blade_expansion_slot(self, expansion, chassis, datacenter): # before everything check if right chassis actual_device_bay = expansion.parent_device.device_bay if expansion.parent_device else None actual_chassis = actual_device_bay.device if actual_device_bay else None slot = self.get_blade_expansion_slot() if actual_chassis and \ actual_chassis.serial == chassis.serial and \ actual_device_bay.name == slot: return real_device_bays = nb.dcim.device_bays.filter( device_id=chassis.id, name=slot, ) if not real_device_bays: logging.error('Could not find slot {slot} expansion for chassis'.format( slot=slot )) return logging.info( 'Setting device expansion ({serial}) new slot on {slot} ' '(Chassis {chassis_serial})..'.format( serial=expansion.serial, slot=slot, chassis_serial=chassis.serial )) # reset actual device bay if set if actual_device_bay: # Forces the evaluation of the installed_device attribute to # workaround a bug probably due to lazy loading optimization # that prevents the value change detection actual_device_bay.installed_device actual_device_bay.installed_device = None actual_device_bay.save() # setup new device bay real_device_bay = next(real_device_bays) real_device_bay.installed_device = expansion real_device_bay.save() def netbox_create_or_update(self, config): """ Netbox method to create or update info about our server/blade Handle: * new chassis for a blade * new slot for a blade * hostname update * Network infos * Inventory management * PSU management """ datacenter = self.get_netbox_datacenter() rack = self.get_netbox_rack() tenant = self.get_netbox_tenant() if config.purge_old_devices: self._netbox_deduplicate_server() if self.is_blade(): chassis = nb.dcim.devices.get( serial=self.get_chassis_service_tag() ) # Chassis does not exist if not chassis: chassis = self._netbox_create_chassis(datacenter, tenant, rack) server = nb.dcim.devices.get(serial=self.get_service_tag()) if not server: server = self._netbox_create_blade(chassis, datacenter, tenant, rack) # Set slot for blade self._netbox_set_or_update_blade_slot(server, chassis, datacenter) else: server = nb.dcim.devices.get(serial=self.get_service_tag()) if not server: server = self._netbox_create_server(datacenter, tenant, rack) logging.debug('Updating Server...') # check network cards if config.register or config.update_all or config.update_network: self.network = ServerNetwork(server=self) self.network.create_or_update_netbox_network_cards() update_inventory = config.inventory and (config.register or config.update_all or config.update_inventory) # update inventory if feature is enabled self.inventory = Inventory(server=self) if update_inventory: self.inventory.create_or_update() # update psu if config.register or config.update_all or config.update_psu: self.power = PowerSupply(server=self) self.power.create_or_update_power_supply() self.power.report_power_consumption() expansion = nb.dcim.devices.get(serial=self.get_expansion_service_tag()) if self.own_expansion_slot() and config.expansion_as_device: logging.debug('Update Server expansion...') if not expansion: expansion = self._netbox_create_blade_expansion(chassis, datacenter, tenant, rack) # set slot for blade expansion self._netbox_set_or_update_blade_expansion_slot(expansion, chassis, datacenter) if update_inventory: # Updates expansion inventory inventory = Inventory(server=self, update_expansion=True) inventory.create_or_update() elif self.own_expansion_slot() and expansion: expansion.delete() expansion = None update = 0 # for every other specs # check hostname if server.name != self.get_hostname(): server.name = self.get_hostname() update += 1 server_tags = sorted(set([x.name for x in server.tags])) tags = sorted(set(self.tags)) if server_tags != tags: new_tags_ids = [x.id for x in self.nb_tags] if not config.preserve_tags: server.tags = new_tags_ids else: server_tags_ids = [x.id for x in server.tags] server.tags = sorted(set(new_tags_ids + server_tags_ids)) update += 1 if server.custom_fields != self.custom_fields: server.custom_fields = self.custom_fields update += 1 if config.update_all or config.update_location: ret, server = self.update_netbox_location(server) update += ret if server.platform != self.device_platform: server.platform = self.device_platform update += 1 if update: server.save() if expansion: update = 0 expansion_name = server.name + ' expansion' if expansion.name != expansion_name: expansion.name = expansion_name update += 1 if self.update_netbox_expansion_location(server, expansion): update += 1 if update: expansion.save() logging.debug('Finished updating Server!') def print_debug(self): self.network = ServerNetwork(server=self) print('Datacenter:', self.get_datacenter()) print('Netbox Datacenter:', self.get_netbox_datacenter()) print('Rack:', self.get_rack()) print('Netbox Rack:', self.get_netbox_rack()) print('Is blade:', self.is_blade()) print('Got expansion:', self.own_expansion_slot()) print('Product Name:', self.get_product_name()) print('Platform:', self.device_platform) print('Chassis:', self.get_chassis()) print('Chassis service tag:', self.get_chassis_service_tag()) print('Service tag:', self.get_service_tag()) print('NIC:',) pprint(self.network.get_network_cards()) pass def own_expansion_slot(self): """ Indicates if the device hosts an expansion card """ return False def own_gpu_expansion_slot(self): """ Indicates if the device hosts a GPU expansion card """ return False def own_drive_expansion_slot(self): """ Indicates if the device hosts a drive expansion bay """ return False
36.43762
103
0.608038
f700bd3e668d5f4fe3f075fecf18bb44137fc1c9
11,470
py
Python
tools/azure-sdk-tools/packaging_tools/swaggertosdk/SwaggerToSdkCore.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
1
2022-02-01T18:50:12.000Z
2022-02-01T18:50:12.000Z
tools/azure-sdk-tools/packaging_tools/swaggertosdk/SwaggerToSdkCore.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
null
null
null
tools/azure-sdk-tools/packaging_tools/swaggertosdk/SwaggerToSdkCore.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
null
null
null
"""SwaggerToSdk core tools. """ from enum import Enum, unique import json import logging import os import re import tempfile from pathlib import Path import requests from github import Github, UnknownObjectException from .autorest_tools import ( autorest_latest_version_finder, autorest_bootstrap_version_finder, autorest_swagger_to_sdk_conf, ) from azure_devtools.ci_tools.github_tools import get_files, GithubLink _LOGGER = logging.getLogger(__name__) CONFIG_FILE = "swagger_to_sdk_config_autorest.json" CONFIG_FILE_DPG = "swagger_to_sdk_config_dpg.json" DEFAULT_COMMIT_MESSAGE = "Generated from {hexsha}" def build_file_content(): autorest_version = autorest_latest_version_finder() autorest_bootstrap_version = autorest_bootstrap_version_finder() return { "autorest": autorest_version, "autorest_bootstrap": autorest_bootstrap_version, } def get_repo_tag_meta(meta_conf): repotag = meta_conf.get("repotag") if repotag: return repotag # Guess for now, "repotag" should be added everywhere if "go" in meta_conf["autorest_options"]: return "azure-sdk-for-go" if "ruby" in meta_conf["autorest_options"]: return "azure-sdk-for-ruby" if "java" in meta_conf["autorest_options"]: return "azure-sdk-for-java" if "nodejs" in meta_conf["autorest_options"]: return "azure-sdk-for-node" if "typescript" in meta_conf["autorest_options"]: return "azure-sdk-for-js" raise ValueError("No repotag found or infered") @unique class Language(str, Enum): GOLANG = "go" RUBY = "ruby" JAVA = "java" NODEJS = "nodejs" CSHARP = "csharp" PYTHON = "python" TYPESCRIPT = "typescript" def get_language_from_conf(meta_conf): """Detect the language based on the default Autorest options. Assuming all language use --mylanguage in the config file. If I don't find anything, well just say I don't know... This is based on autorest language flags. :rtype: Language """ autorest_options_lang = set(meta_conf["autorest_options"].keys()) languages = set() for value in Language: if value in autorest_options_lang: languages.add(value) if not languages: _LOGGER.warning("No detected language from this conf") return None # I don't what this conf is about? language = languages.pop() if languages: _LOGGER.warning("This SwaggerToSdk conf seems to generate too much language in one call, assume we don't know") return None return language def get_context_tag_from_git_object(git_object): files_list = [file.filename for file in get_files(git_object)] return get_context_tag_from_file_list(files_list) def get_context_tag_from_file_list(files_list): context_tags = set() for filename in files_list: filepath = Path(filename) filename = filepath.as_posix() if "/examples/" in filename: # Do not compute context for example that are not used in SDK continue # Match if RP name match = re.match(r"specification/(.*)/Microsoft.\w*/(stable|preview)/", filename, re.I) if match: context_tags.add(match.groups()[0]) continue # Match if stable/preview but not RP like ARM (i.e. Cognitive Services) match = re.match(r"specification/(.*)/(stable|preview)/", filename, re.I) if match: context_tags.add(match.groups()[0]) continue # Match Readme # Do it last step, because if some weird Readme for ServiceFabric... match = re.match(r"specification/(.*)/readme.\w*.?md", filename, re.I) if match: context_tags.add(match.groups()[0]) continue # No context-tags return context_tags def this_conf_will_generate_for_this_pr(git_object, config): """Try to guess if this PR has a chance to generate something for this conf. Right now, just match the language in the conf with the presence of ONLY "readme.language.md" files. """ lang = get_language_from_conf(config) filenames = [file.filename.lower() for file in get_files(git_object)] readme_lang = [name for name in filenames if re.match(r"(.*)readme.\w+.md", name)] if len(readme_lang) != len(filenames): return True # This means there is files that are not language specific readme return bool([name for name in readme_lang if name.endswith("readme.{}.md".format(lang))]) def get_readme_files_from_git_object(git_object, base_dir=Path(".")): files_list = [file.filename for file in get_files(git_object)] return get_readme_files_from_file_list(files_list, base_dir) def get_readme_files_from_file_list(files_list, base_dir=Path(".")): """Get readme files from this PR. Algo is to look for context, and then search for Readme inside this context. """ readme_files = set() context_tags = get_context_tag_from_file_list(files_list) for context_tag in context_tags: expected_folder = Path(base_dir) / Path("specification/{}".format(context_tag)) if not expected_folder.is_dir(): _LOGGER.warning("From context {} I didn't find folder {}".format(context_tag, expected_folder)) continue for expected_readme in [l for l in expected_folder.iterdir() if l.is_file()]: # Need to do a case-insensitive test. match = re.match(r"readme.\w*.?md", expected_readme.name, re.I) if match: readme_files.add(expected_readme.relative_to(Path(base_dir))) return readme_files def read_config(sdk_git_folder, config_file): """Read the configuration file and return JSON""" config_path = os.path.join(sdk_git_folder, config_file) with open(config_path, "r") as config_fd: return json.loads(config_fd.read()) def read_config_from_github(sdk_id, branch="main", gh_token=None): raw_link = str(get_configuration_github_path(sdk_id, branch)) _LOGGER.debug("Will try to download: %s", raw_link) _LOGGER.debug("Token is defined: %s", gh_token is not None) headers = {"Authorization": "token {}".format(gh_token)} if gh_token else {} response = requests.get(raw_link, headers=headers) if response.status_code != 200: raise ValueError( "Unable to download conf file for SDK {} branch {}: status code {}".format( sdk_id, branch, response.status_code ) ) return json.loads(response.text) def extract_conf_from_readmes(swagger_files_in_pr, restapi_git_folder, sdk_git_id, config, force_generation=False): readme_files_in_pr = { readme for readme in swagger_files_in_pr if getattr(readme, "name", readme).lower().endswith("readme.md") } for readme_file in readme_files_in_pr: build_swaggertosdk_conf_from_json_readme( readme_file, sdk_git_id, config, base_folder=restapi_git_folder, force_generation=force_generation ) def get_readme_path(readme_file, base_folder="."): """Get a readable Readme path. If start with http, assume online, ignore base_folder and convert to raw link if necessary. If base_folder is not None, assume relative to base_folder. """ if not isinstance(readme_file, Path) and readme_file.startswith("http"): return GithubLink.from_string(readme_file).as_raw_link() else: if base_folder is None: base_folder = "." return str(Path(base_folder) / Path(readme_file)) def build_swaggertosdk_conf_from_json_readme(readme_file, sdk_git_id, config, base_folder=".", force_generation=False): """Get the JSON conf of this README, and create SwaggerToSdk conf. Readme path can be any readme syntax accepted by autorest. readme_file will be project key as-is. :param str readme_file: A path that Autorest accepts. Raw GH link or absolute path. :param str sdk_dit_id: Repo ID. IF org/login is provided, will be stripped. :param dict config: Config where to update the "projects" key. :param bool force_generation: If no Swagger to SDK section is found, force once with the Readme as input """ readme_full_path = get_readme_path(readme_file, base_folder) with tempfile.TemporaryDirectory() as temp_dir: readme_as_conf = autorest_swagger_to_sdk_conf(readme_full_path, temp_dir, config) generated_config = { "markdown": readme_full_path, } sdk_git_short_id = sdk_git_id.split("/")[-1].lower() _LOGGER.info("Looking for tag {} in readme {}".format(sdk_git_short_id, readme_file)) for swagger_to_sdk_conf in readme_as_conf: if not isinstance(swagger_to_sdk_conf, dict): continue repo = swagger_to_sdk_conf.get("repo", "") repo = repo.split("/")[-1].lower() # Be sure there is no org/login part if repo == sdk_git_short_id: _LOGGER.info("This Readme contains a swagger-to-sdk section for repo {}".format(repo)) generated_config.update( { "autorest_options": swagger_to_sdk_conf.get("autorest_options", {}), "after_scripts": swagger_to_sdk_conf.get("after_scripts", []), } ) config.setdefault("projects", {})[str(readme_file)] = generated_config return generated_config else: _LOGGER.info("Skip mismatch {} from {}".format(repo, sdk_git_short_id)) if not force_generation: _LOGGER.info( "Didn't find tag {} in readme {}. Did you forget to update the SwaggerToSdk section?".format( sdk_git_short_id, readme_file ) ) else: _LOGGER.info("Didn't find tag {} in readme {}. Forcing it.".format(sdk_git_short_id, readme_file)) config.setdefault("projects", {})[str(readme_file)] = generated_config def get_input_paths(global_conf, local_conf): """Returns a 2-tuple: - Markdown Path or None - Input-file Paths or empty list """ del global_conf # Unused relative_markdown_path = None # Markdown is optional input_files = [] # Input file could be empty if "markdown" in local_conf: relative_markdown_path = Path(local_conf["markdown"]) input_files = local_conf.get("autorest_options", {}).get("input-file", []) if input_files and not isinstance(input_files, list): input_files = [input_files] input_files = [Path(input_file) for input_file in input_files] if not relative_markdown_path and not input_files: raise ValueError("No input file found") return (relative_markdown_path, input_files) def solve_relative_path(autorest_options, sdk_root): """Solve relative path in conf. If a key is prefixed by "sdkrel:", it's solved against SDK root. """ SDKRELKEY = "sdkrel:" solved_autorest_options = {} for key, value in autorest_options.items(): if key.startswith(SDKRELKEY): _LOGGER.debug("Found a sdkrel pair: %s/%s", key, value) subkey = key[len(SDKRELKEY) :] solved_value = Path(sdk_root, value).resolve() solved_autorest_options[subkey] = str(solved_value) else: solved_autorest_options[key] = value return solved_autorest_options def get_configuration_github_path(sdk_id, branch="master"): return GithubLink(sdk_id, "raw", branch, CONFIG_FILE)
38.233333
119
0.682476
f700c767ff92c13aef1a23a878df02eea4e86053
3,656
py
Python
src/Application/PythonScriptModule/pymodules_old/circuits/core/values.py
antont/tundra
5c9b0a3957071f08ab425dff701cdbb34f9e1868
[ "Apache-2.0" ]
1
2018-04-02T15:38:10.000Z
2018-04-02T15:38:10.000Z
src/Application/PythonScriptModule/pymodules_old/circuits/core/values.py
antont/tundra
5c9b0a3957071f08ab425dff701cdbb34f9e1868
[ "Apache-2.0" ]
null
null
null
src/Application/PythonScriptModule/pymodules_old/circuits/core/values.py
antont/tundra
5c9b0a3957071f08ab425dff701cdbb34f9e1868
[ "Apache-2.0" ]
1
2021-09-04T12:37:34.000Z
2021-09-04T12:37:34.000Z
# Package: values # Date: 11th April 2010 # Author: James Mills, prologic at shortcircuit dot net dot au """Values This defines the Value object used by components and events. """ from types import ListType from itertools import imap from events import Event class ValueChanged(Event): """Value Changed Event This Event is triggered when the return Value of an Event Handler has changed it's value. """ def __init__(self, value): "x.__init__(...) initializes x; see x.__class__.__doc__ for signature" super(ValueChanged, self).__init__(value) class Value(object): """Create a new future Value Object Creates a new future Value Object which is used by Event Objects and the Manager to store the result(s) of an Event Handler's exeuction of some Event in the system. :param event: The Event this Value is associated with. :type event: Event instance :param manager: The Manager/Component used to trigger notifications. :type manager: A Manager/Component instance. :param onSet: The channel used when triggering ValueChagned events. :type onSet: A (channel, target) tuple. :ivar result: True if this value has been changed. :ivar errors: True if while setting this value an exception occured. This is a Future/Promise implementation. """ def __init__(self, event=None, manager=None, onSet=None): "x.__init__(...) initializes x; see x.__class__.__doc__ for signature" self.event = event self.manager = manager self.onSet = onSet self.result = False self.errors = False self._parent = self self._value = None def __getstate__(self): keys = ("event", "onSet", "result", "errors", "_value") return dict([(k, getattr(self, k, None)) for k in keys]) def __contains__(self, y): value = self.value return y in value if type(value) is ListType else y == value def __getitem__(self, y): v = self.value[y] if isinstance(v, Value): return v.value else: return v def __iter__(self): return imap(lambda v: v.value if isinstance(v, Value) else v, self.value) def __repr__(self): "x.__repr__() <==> repr(x)" value = "" if self.result: value = repr(self.value) format = "<Value (%s) result: %r errors: %r for %r" return format % (value, self.result, self.errors, self.event) def __str__(self): "x.__str__() <==> str(x)" return str(self.value) def getValue(self): value = self._value while isinstance(value, Value): value = value._value return value def setValue(self, value): if isinstance(value, Value): value._parent = self if self.result and type(self._value) is ListType: self._value.append(value) elif self.result: self._value = [self._value] self._value.append(value) else: self._value = value def notify(o, v): if not isinstance(v, Value) and v is not None: o.result = True if o.manager is not None and o.onSet is not None: o.manager.fireEvent(ValueChanged(o), *o.onSet) elif isinstance(v, Value): o.errors = v.errors o.result = v.result if not o._parent == o: notify(o._parent, v) notify(self, value) value = property(getValue, setValue, None, "Value of this Value")
28.341085
78
0.602298
f700e68836d56c80b1eb23849bcf903eda4dfa6c
5,105
py
Python
nova/virt/hyperv/imagecache.py
ebalduf/nova-backports
6bf97ec73467de522d34ab7a17ca0e0874baa7f9
[ "Apache-2.0" ]
null
null
null
nova/virt/hyperv/imagecache.py
ebalduf/nova-backports
6bf97ec73467de522d34ab7a17ca0e0874baa7f9
[ "Apache-2.0" ]
null
null
null
nova/virt/hyperv/imagecache.py
ebalduf/nova-backports
6bf97ec73467de522d34ab7a17ca0e0874baa7f9
[ "Apache-2.0" ]
null
null
null
# Copyright 2013 Cloudbase Solutions Srl # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Image caching and management. """ import os from os_win import utilsfactory from oslo_log import log as logging from oslo_utils import excutils from oslo_utils import units import nova.conf from nova import exception from nova import utils from nova.virt.hyperv import pathutils from nova.virt import images LOG = logging.getLogger(__name__) CONF = nova.conf.CONF class ImageCache(object): def __init__(self): self._pathutils = pathutils.PathUtils() self._vhdutils = utilsfactory.get_vhdutils() def _get_root_vhd_size_gb(self, instance): if instance.old_flavor: return instance.old_flavor.root_gb else: return instance.root_gb def _resize_and_cache_vhd(self, instance, vhd_path): vhd_size = self._vhdutils.get_vhd_size(vhd_path)['VirtualSize'] root_vhd_size_gb = self._get_root_vhd_size_gb(instance) root_vhd_size = root_vhd_size_gb * units.Gi root_vhd_internal_size = ( self._vhdutils.get_internal_vhd_size_by_file_size( vhd_path, root_vhd_size)) if root_vhd_internal_size < vhd_size: raise exception.FlavorDiskSmallerThanImage( flavor_size=root_vhd_size, image_size=vhd_size) if root_vhd_internal_size > vhd_size: path_parts = os.path.splitext(vhd_path) resized_vhd_path = '%s_%s%s' % (path_parts[0], root_vhd_size_gb, path_parts[1]) @utils.synchronized(resized_vhd_path) def copy_and_resize_vhd(): if not self._pathutils.exists(resized_vhd_path): try: LOG.debug("Copying VHD %(vhd_path)s to " "%(resized_vhd_path)s", {'vhd_path': vhd_path, 'resized_vhd_path': resized_vhd_path}) self._pathutils.copyfile(vhd_path, resized_vhd_path) LOG.debug("Resizing VHD %(resized_vhd_path)s to new " "size %(root_vhd_size)s", {'resized_vhd_path': resized_vhd_path, 'root_vhd_size': root_vhd_size}) self._vhdutils.resize_vhd(resized_vhd_path, root_vhd_internal_size, is_file_max_size=False) except Exception: with excutils.save_and_reraise_exception(): if self._pathutils.exists(resized_vhd_path): self._pathutils.remove(resized_vhd_path) copy_and_resize_vhd() return resized_vhd_path def get_cached_image(self, context, instance): image_id = instance.image_ref base_vhd_dir = self._pathutils.get_base_vhd_dir() base_vhd_path = os.path.join(base_vhd_dir, image_id) @utils.synchronized(base_vhd_path) def fetch_image_if_not_existing(): vhd_path = None for format_ext in ['vhd', 'vhdx']: test_path = base_vhd_path + '.' + format_ext if self._pathutils.exists(test_path): vhd_path = test_path break if not vhd_path: try: images.fetch(context, image_id, base_vhd_path) format_ext = self._vhdutils.get_vhd_format(base_vhd_path) vhd_path = base_vhd_path + '.' + format_ext.lower() self._pathutils.rename(base_vhd_path, vhd_path) except Exception: with excutils.save_and_reraise_exception(): if self._pathutils.exists(base_vhd_path): self._pathutils.remove(base_vhd_path) return vhd_path vhd_path = fetch_image_if_not_existing() if CONF.use_cow_images and vhd_path.split('.')[-1].lower() == 'vhd': # Resize the base VHD image as it's not possible to resize a # differencing VHD. This does not apply to VHDX images. resized_vhd_path = self._resize_and_cache_vhd(instance, vhd_path) if resized_vhd_path: return resized_vhd_path return vhd_path
39.573643
78
0.591773
f700f20444454593e2536cb9e2591f4eae5a213c
7,178
py
Python
src/config.py
volovodenko/English
860ae0f971909b9aa299c193ea7d0161c88d0b22
[ "Apache-2.0" ]
null
null
null
src/config.py
volovodenko/English
860ae0f971909b9aa299c193ea7d0161c88d0b22
[ "Apache-2.0" ]
null
null
null
src/config.py
volovodenko/English
860ae0f971909b9aa299c193ea7d0161c88d0b22
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import os import re import json import os.path import unittest reg_cmnt = re.compile(r"/\*.*?\*/", re.DOTALL) class Config: "Работа с конфигурационным файлом" def __init__(self, main_path=None, user_path=None): if main_path is None: self._main_path = "config.json5" else: self._main_path = main_path if user_path is None: self._user_path = "config_user.json5" else: self._user_path = user_path self._cfg_dict = {} def __getitem__(self, key): return self._cfg_dict[key] def __len__(self): return len(self._cfg_dict) def _load_json(self, path): data = {} if os.path.exists(path): txt = open(path).read() txt = reg_cmnt.sub("", txt) # remove comments data = json.loads(txt) return data def _set_default(self, cfg): cfg["path_to_dict"] = cfg.get("path_to_dict", "dict.json") cfg["path_to_stat"] = cfg.get("path_to_stat", "statistic.json") cfg["words_per_lesson"] = int(cfg.get("words_per_lesson", 5)) cfg["CntStudyWords"] = int(cfg.get("CntStudyWords", 50)) cfg["MinPercent"] = float(cfg.get("MinPercent", 97.0)) cfg["MinSuccessCnt"] = int(cfg.get("MinSuccessCnt", 10)) cfg["retry_time"] = int(cfg.get("retry_time", 1800)) cfg["hide_transcription"] = cfg.get("hide_transcription", "no") cfg["start_time_delay"] = int(cfg.get("start_time_delay", 1)) cfg["stat_count_row"] = int(cfg.get("stat_count_row", 200)) cfg["right_answer_percent"] = float(cfg.get("right_answer_percent", 10.0)) cfg["wrong_answer_percent"] = float(cfg.get("wrong_answer_percent", 40.0)) cfg["empty_answer_is_error"] = cfg.get("empty_answer_is_error", "no") cfg["internet_dictionary_url"] = cfg.get("internet_dictionary_url", {"EN_RU": "http://slovari.yandex.ru/{word}/en-ru/#lingvo/", "RU_EN": "http://slovari.yandex.ru/{word}/en/#lingvo/"}) def create_default_user_config(self): if not os.path.isfile(self._user_path): txt = "{\n /*\n User config\n */\n\n}" open(self._user_path, "wt").write(txt) def reload(self): self._cfg_dict = {} self._cfg_dict.update(self._load_json(self._main_path)) self._cfg_dict.update(self._load_json(self._user_path)) self._set_default(self._cfg_dict) return self._cfg_dict def get_dict(self): return self._cfg_dict class ConfigTestCase(unittest.TestCase): "Набор тестов для класса Config" def setUp(self): if os.path.isfile("test_config_user.json"): os.remove("test_config_user.json") def tearDown(self): if os.path.isfile("test_config_user.json"): os.remove("test_config_user.json") def equal_cfg(self, cfg, test_dict): for key, val in test_dict.items(): self.assertEqual(cfg[key], val) self.assertEqual(len(cfg), 14) def test_main(self): "Тестирование загрузки основного файла с конфигурацией" test_dict = { "path_to_dict": "dict.json", "path_to_stat": "statistic.json", "words_per_lesson": 5, "CntStudyWords": 50, "MinPercent": 97.0, "MinSuccessCnt": 10, "retry_time": 1800, "hide_transcription": "no", "start_time_delay": 1, "stat_count_row": 200, "right_answer_percent": 10.0, "wrong_answer_percent": 40.0, "empty_answer_is_error": "no", "internet_dictionary_url": {"EN_RU": "http://slovari.yandex.ru/{word}/en-ru/#lingvo/", "RU_EN": "http://slovari.yandex.ru/{word}/en/#lingvo/"}} cfg = Config("config.json5", "fake_config_user.json") cfg.reload() self.equal_cfg(cfg, test_dict) def test_user(self): "Тестирование загрузки пользовательского файла с конфигурацией" test_dict = { "path_to_dict": "dict1.json", "path_to_stat": "statistic1.json", "words_per_lesson": 6, "CntStudyWords": 60, "MinPercent": 98.0, "MinSuccessCnt": 11, "retry_time": 1801, "hide_transcription": "yes", "start_time_delay": 2, "stat_count_row": 300, "right_answer_percent": 20.0, "wrong_answer_percent": 50.0, "empty_answer_is_error": "yes", "internet_dictionary_url": {"EN_RU": "http1://slovari.yandex.ru/{word}/en-ru/#lingvo/", "RU_EN": "http1://slovari.yandex.ru/{word}/en/#lingvo/"}} json.dump(test_dict, open("test_config_user.json", "w")) cfg = Config("config.json5", "test_config_user.json") cfg.reload() self.equal_cfg(cfg, test_dict) def test_user_part(self): "Тестирование загрузки пользовательского файла с конфигурацией, который перекрывает только часть настроек" test_dict = { "path_to_dict": "dict1.json", "path_to_stat": "statistic1.json", "words_per_lesson": 6, "CntStudyWords": 60, "MinPercent": 98.0, "MinSuccessCnt": 11} json.dump(test_dict, open("test_config_user.json", "w")) test_dict.update({ "retry_time": 1800, "hide_transcription": "no", "start_time_delay": 1, "stat_count_row": 200, "right_answer_percent": 10.0, "wrong_answer_percent": 40.0, "empty_answer_is_error": "no"}) cfg = Config("config.json5", "test_config_user.json") cfg.reload() self.equal_cfg(cfg, test_dict) def test_not_exists(self): "Тестирование выставления дефолтных настроек" test_dict = { "path_to_dict": "dict.json", "path_to_stat": "statistic.json", "words_per_lesson": 5, "CntStudyWords": 50, "MinPercent": 97.0, "MinSuccessCnt": 10, "retry_time": 1800, "hide_transcription": "no", "start_time_delay": 1, "stat_count_row": 200, "right_answer_percent": 10.0, "wrong_answer_percent": 40.0, "empty_answer_is_error": "no", "internet_dictionary_url": {"EN_RU": "http://slovari.yandex.ru/{word}/en-ru/#lingvo/", "RU_EN": "http://slovari.yandex.ru/{word}/en/#lingvo/"}} cfg = Config("config.json5", "fake_config_user.json") cfg.reload() self.equal_cfg(cfg, test_dict) cfg = Config("fake_config.json", "fake_config_user.json") cfg.reload() if __name__ == "__main__": os.chdir(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) suite = unittest.TestLoader().loadTestsFromTestCase(ConfigTestCase) unittest.TextTestRunner(verbosity=2).run(suite)
36.622449
114
0.57314
f70101d2e677dfa1c95b8d12717565b56481d031
11,171
py
Python
server/server/organizations/models.py
connectiveproject/connective
8866082b2147feef0e5254ac4215987b9d881396
[ "MIT" ]
4
2021-07-05T10:49:26.000Z
2021-11-24T11:34:43.000Z
server/server/organizations/models.py
connectiveproject/connective
8866082b2147feef0e5254ac4215987b9d881396
[ "MIT" ]
39
2021-06-21T15:02:37.000Z
2022-02-28T15:07:42.000Z
server/server/organizations/models.py
connectiveproject/connective
8866082b2147feef0e5254ac4215987b9d881396
[ "MIT" ]
17
2021-06-16T08:59:45.000Z
2021-09-29T11:35:38.000Z
from django.core.validators import RegexValidator from django.db import models from django.utils.translation import gettext_lazy as _ from taggit.managers import TaggableManager from server.connective_tags.models import ConnectiveTaggedItem from server.schools.models import School from server.utils.db_utils import get_base_model from server.utils.model_fields import random_slug class SchoolActivityGroupManager(models.Manager): def get_activity_container_only_group(self, activity_group): container_only_groups = self.filter( activity_order=activity_group.activity_order, group_type=SchoolActivityGroup.GroupTypes.CONTAINER_ONLY, ) if container_only_groups.exists(): return container_only_groups[0] class ImportedOrganization(get_base_model()): slug = models.CharField(max_length=40, default=random_slug, unique=True) organization_number = models.CharField(max_length=10, unique=True) email = models.EmailField(null=True, blank=True) description = models.CharField(max_length=4096, null=True, blank=True) website_url = models.URLField(null=True, blank=True) name = models.CharField(max_length=256, null=True, blank=True) goal = models.CharField(max_length=4096, null=True, blank=True) year_founded = models.CharField(max_length=128, null=True, blank=True) status = models.CharField(max_length=50, null=True, blank=True) target_audience = models.JSONField(null=True, blank=True) number_of_employees = models.PositiveIntegerField(null=True, blank=True) number_of_members = models.PositiveIntegerField(null=True, blank=True) number_of_volunteers = models.PositiveIntegerField(null=True, blank=True) location_lon = models.DecimalField( max_digits=9, decimal_places=6, null=True, blank=True, ) location_lat = models.DecimalField( max_digits=9, decimal_places=6, null=True, blank=True, ) address_city = models.CharField(max_length=256, null=True, blank=True) address_street = models.CharField(max_length=256, null=True, blank=True) address_house_num = models.CharField(max_length=30, null=True, blank=True) address_zipcode = models.CharField(max_length=9, null=True, blank=True) cities = models.JSONField(null=True, blank=True) districts = models.JSONField(null=True, blank=True) union_type = models.CharField(max_length=50, null=True, blank=True) def __str__(self): return f"{self.name} | {self.organization_number} | {self.slug}" class Organization(get_base_model()): slug = models.CharField(max_length=40, default=random_slug, unique=True) organization_number = models.CharField(max_length=10, unique=True, null=True) email = models.EmailField() description = models.CharField(max_length=300) website_url = models.URLField(null=True, blank=True) name = models.CharField(max_length=100) goal = models.CharField(max_length=300, null=True, blank=True) year_founded = models.CharField(max_length=4, null=True, blank=True) status = models.CharField(max_length=50, null=True, blank=True) target_audience = models.JSONField(null=True, blank=True) number_of_employees = models.PositiveIntegerField(null=True, blank=True) number_of_members = models.PositiveIntegerField(null=True, blank=True) number_of_volunteers = models.PositiveIntegerField(null=True, blank=True) location_lon = models.DecimalField( max_digits=9, decimal_places=6, null=True, blank=True, ) location_lat = models.DecimalField( max_digits=9, decimal_places=6, null=True, blank=True, ) address_city = models.CharField(max_length=150, null=True, blank=True) address_street = models.CharField(max_length=150, null=True, blank=True) address_house_num = models.CharField(max_length=20, null=True, blank=True) address_zipcode = models.CharField(max_length=9, null=True, blank=True) cities = models.JSONField(null=True, blank=True) districts = models.JSONField(null=True, blank=True) union_type = models.CharField(max_length=50, null=True, blank=True) def __str__(self): return f"{self.name} | {self.organization_number} | {self.slug}" class Activity(get_base_model()): class Domain(models.TextChoices): SCIENCE_AND_TECH = "SCIENCE_AND_TECH", "Science And Tech" EXTREME_SPORTS = "EXTREME_SPORTS", "Extreme Sports" FIELD = "FIELD", "Field" OTHER = "OTHER", "Other" tags = TaggableManager(blank=True, through=ConnectiveTaggedItem) slug = models.CharField(max_length=40, default=random_slug, unique=True) name = models.CharField(max_length=35) target_audience = models.JSONField() domain = models.CharField(max_length=55, null=True, choices=Domain.choices) originization = models.ForeignKey( Organization, on_delete=models.SET_NULL, null=True, blank=True, related_name="activities", ) activity_website_url = models.URLField(max_length=750, null=True, blank=True) activity_email = models.EmailField(null=True, blank=True) description = models.CharField(max_length=550, default="") contact_name = models.CharField(max_length=60, default="") logo = models.ImageField(blank=True, null=True) phone_number = models.CharField( blank=True, max_length=15, validators=[ RegexValidator( regex=r"^\d{9,15}$", message=_("phone number must be between 9-15 digits"), ) ], ) def __str__(self): try: return f"{self.name} | {self.slug} | {self.originization.name}" except AttributeError: return f"{self.name} | {self.slug}" class ImportedActivity(get_base_model()): slug = models.CharField(max_length=40, default=random_slug, unique=True) activity_code = models.IntegerField() name = models.CharField(max_length=550) raw_name = models.CharField(max_length=550) target_audience = models.JSONField() organization_number = models.IntegerField() organization_name = models.CharField(max_length=1550, default="") target_gender = models.JSONField() target_gender = models.JSONField() target_population = models.JSONField() target_time = models.JSONField() target_size = models.JSONField() target_migzar = models.JSONField() target_pikuah = models.JSONField() profession = models.JSONField() goal = models.CharField(max_length=1550, default="") is_active = models.BooleanField() activity_website_url = models.URLField(max_length=750, null=True, blank=True) activity_email = models.EmailField(null=True, blank=True) description = models.CharField(max_length=1550, default="") contact_name = models.CharField(max_length=100, default="") phone_number = models.CharField( blank=True, max_length=15, validators=[ RegexValidator( regex=r"^\d{9,15}$", message=_("phone number must be between 9-15 digits"), ) ], ) def __str__(self): return f"{self.name} | {self.slug} | {self.activity_code}" class ActivityMedia(get_base_model()): slug = models.CharField(max_length=40, default=random_slug, unique=True) name = models.CharField(max_length=40, null=True, blank=True) image_url = models.ImageField(blank=True, null=True) video_url = models.URLField(blank=True, null=True) activity = models.ForeignKey( Activity, on_delete=models.CASCADE, related_name="rich_media", ) def __str__(self): return f"{self.name} | {self.slug} | {self.activity.name}" class OrganizationMember(get_base_model()): user = models.OneToOneField( "users.User", on_delete=models.CASCADE, related_name="organization_member" ) organization = models.ForeignKey( Organization, on_delete=models.CASCADE, related_name="organization_member", ) def __str__(self): return f"{self.user.email} | {self.organization.name}" class SchoolActivityOrder(get_base_model()): class Meta: constraints = [ models.UniqueConstraint(fields=["school", "activity"], name="unique_order") ] class Status(models.TextChoices): CANCELLED = "CANCELLED", "Cancelled" PENDING_ADMIN_APPROVAL = "PENDING_ADMIN_APPROVAL", "Pending Admin Approval" APPROVED = "APPROVED", "Approved" DENIED = "DENIED", "Denied" base_status = Status.PENDING_ADMIN_APPROVAL slug = models.CharField(max_length=40, default=random_slug, unique=True) requested_by = models.ForeignKey( "users.User", on_delete=models.SET_NULL, null=True, blank=True, related_name="requested_orders", ) last_updated_by = models.ForeignKey( "users.User", on_delete=models.SET_NULL, null=True, blank=True, related_name="last_updated_by_me_orders", ) school = models.ForeignKey( School, on_delete=models.CASCADE, related_name="school_activity_orders" ) activity = models.ForeignKey( Activity, on_delete=models.CASCADE, related_name="school_activity_orders" ) status = models.CharField( _("status"), max_length=50, choices=Status.choices, default=base_status ) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) status_reason = models.CharField( max_length=250, blank=True, ) def __str__(self): return f"{self.activity} | {self.school} | {self.status} | {self.pk}" class SchoolActivityGroup(get_base_model()): class GroupTypes(models.TextChoices): CONTAINER_ONLY = "CONTAINER_ONLY", "Container Only" DISABLED_CONSUMERS = "DISABLED_CONSUMERS", "Disabled Consumers" NO_REGISTRATION = "NO_REGISTRATION", "No Registration" DEFAULT = "DEFAULT", "Default" objects = SchoolActivityGroupManager() slug = models.CharField(max_length=40, default=random_slug, unique=True) activity_order = models.ForeignKey( SchoolActivityOrder, on_delete=models.CASCADE, related_name="activity_groups" ) name = models.CharField(_("name"), max_length=50) description = models.CharField(_("description"), max_length=550) consumers = models.ManyToManyField( "users.Consumer", related_name="activity_groups", blank=True, ) group_type = models.CharField( _("group type"), max_length=50, choices=GroupTypes.choices, default=GroupTypes.DEFAULT, ) instructor = models.ForeignKey( "users.Instructor", on_delete=models.SET_NULL, related_name="managed_activity_groups", null=True, blank=True, ) def __str__(self): return f""" {self.name} : {self.group_type} : {self.slug} : {self.activity_order.activity.name} : {self.activity_order.school.name} """
37.612795
87
0.688569
f70153728cb260c3c86bc652b2c6fedfd73c3c53
4,548
py
Python
core/assembly_system.py
YifanQie/Deep_Learning_for_Manufacturing
9ba19e41f69c561b04b8573ab9c52c0969f45bfd
[ "MIT" ]
27
2019-10-31T15:16:13.000Z
2022-03-29T03:56:57.000Z
core/assembly_system.py
YifanQie/Deep_Learning_for_Manufacturing
9ba19e41f69c561b04b8573ab9c52c0969f45bfd
[ "MIT" ]
4
2020-03-25T14:18:04.000Z
2022-02-10T00:34:58.000Z
core/assembly_system.py
YifanQie/Deep_Learning_for_Manufacturing
9ba19e41f69c561b04b8573ab9c52c0969f45bfd
[ "MIT" ]
7
2020-02-23T22:12:37.000Z
2021-12-08T20:14:41.000Z
import numpy as np import pandas as pd """ Contains core classes and methods for initializing a Assembly System, the inputs are provided in assemblyconfig file in utilities""" class AssemblySystem: """Assembly System Class :param assembly_type: Type of assembly Single-Station/Multi-Station :type assembly_system: str (required) :param assembly_kccs: Number of KCCs for the assembly :type assembly_kccs: int (required) :param assembly_kpis: Number of Kpis for the assembly :type assembly_kpis: int (required) """ def __init__(self,assembly_type,assembly_kccs,assembly_kpis): self.assembly_type=assembly_type self.assembly_kccs=assembly_kccs self.assembly_kpis=assembly_kpis class PartType(AssemblySystem): """Part System Class, inherits the Assembly System Class, additional parameters for this class include :param voxel_dim: Dimension of the voxel :type assembly_system: int (required) :param voxel_dim: Dimension of the voxel Channel, single channel output - 1 or multi channel - 2,3 (use 1 for deviations in one direction, 2 or 3 if data for multiple deviation directions are present) :type assembly_system: int (required) :param voxel_dim: Dimension of the voxel :type assembly_system: int (required) The class contains two functions - get_nominal_cop and get_nominal_cop_database """ def __init__(self,assembly_type,assembly_kccs,assembly_kpis,part_name,part_type,voxel_dim,voxel_channels,point_dim): super().__init__(assembly_type,assembly_kccs,assembly_kpis) self.part_name=part_name self.part_type=part_type self.voxel_dim=voxel_dim self.voxel_channels=voxel_channels self.point_dim=point_dim def get_nominal_cop(self,file_name): """Import nominal cloud-of-point of the assembly from a text/csv file :param file_name: Name of the input file :type file_name: str (required) :returns: numpy array of nominal COP :rtype: numpy.array [point_dim,3] """ df=pd.read_csv(file_name, sep=',',header=None) nominal_cop=df.values return nominal_cop def get_nominal_cop_database(self,conn_str,table_name): """Import nominal cloud-of-point of the assembly from a SQL database assumes the table only contains three columns of the nominal COPs in order of the Node IDs :param conn_str: Connection String for Database :type conn_str: str (required) :param table_name: Name of table in the database :type table_name: str (required) :returns: numpy array of dim points * 3 :rtype: numpy.array [point_dim,3] """ engine = create_engine(conn_str) squery ='select * from '+table_name df_nom = pd.read_sql_query(squery,con=engine) df_nom = df_nom.values return df_nom class VRMSimulationModel(PartType): """VRM Simulation Model class inherits the part type class, additional parameters of this class include :param noise_level: The level of artificial noise to be added to simulated data, typically set to 0.1 mm from the measurement system class depending on the scanner :type noise_level: float (required) :param noise_type: The type of noise to be added, can be Gaussian or uniform , for Gaussian noise_level is set as standard deviation and mean as zero for uniform the min and max are set -noise_level and +noise_level respectively :type noise_type: str (optional) :param convergency_flag: Flag to denote if the simulation model had converged while simulating, is set to 1 by default :type convergency_flag: int (optional) The class contains one function kpi_calculator that needs to be defined by the user depending on the assembly output """ def __init__(self,assembly_type,assembly_kccs,assembly_kpis,part_name,part_type,voxel_dim,voxel_channels,point_dim,noise_level,noise_type='uniform',convergency_flag=1): super().__init__(assembly_type,assembly_kccs,assembly_kpis,part_name,part_type,voxel_dim,voxel_channels,point_dim) self.noise_level=noise_level self.noise_type=noise_type self.convergency_flag=convergency_flag def kpi_calculator(self,cop_data,kpi_params=[]): """ User defined function to calculate KPI from Cloud of Point Data [KPI]=f(Cop) :param cop_data: CoP data for a given sample :type cop_data: np_array [point_dim,3] (required) :param kpi_params: Various parameters required to calculate the KPI, can be blank if no parameters are required to calculate KPI from CoP :type kpi_params: list (optional) :returns: list of multivariate KPIs for the given CoP :rtype: list """ kpi=[None]*self.assembly_kpis #define function here return kpi
39.547826
230
0.776165
f701a87736fbc584f7e9ffd3e6d8d63f457be0ba
2,204
py
Python
lhotse/manipulation.py
freewym/lhotse
66e9bbaf25b75011388ab00189baa162c3c1d435
[ "Apache-2.0" ]
null
null
null
lhotse/manipulation.py
freewym/lhotse
66e9bbaf25b75011388ab00189baa162c3c1d435
[ "Apache-2.0" ]
null
null
null
lhotse/manipulation.py
freewym/lhotse
66e9bbaf25b75011388ab00189baa162c3c1d435
[ "Apache-2.0" ]
null
null
null
from functools import reduce from itertools import chain from operator import add from typing import Iterable, Optional, TypeVar from lhotse.audio import Recording, RecordingSet from lhotse.cut import Cut, CutSet, MixedCut from lhotse.features import FeatureSet, Features from lhotse.supervision import SupervisionSegment, SupervisionSet from lhotse.utils import Pathlike, load_yaml ManifestItem = TypeVar('ManifestItem', Recording, SupervisionSegment, Features, Cut, MixedCut) Manifest = TypeVar('Manifest', RecordingSet, SupervisionSet, FeatureSet, CutSet) def combine(*manifests: Manifest) -> Manifest: """Combine multiple manifests of the same type into one.""" return reduce(add, manifests) def to_manifest(items: Iterable[ManifestItem]) -> Optional[Manifest]: """ Take an iterable of data types in Lhotse such as Recording, SupervisonSegment or Cut, and create the manifest of the corresponding type. When the iterable is empty, returns None. """ items = iter(items) try: first_item = next(items) except StopIteration: return None items = chain([first_item], items) if isinstance(first_item, Recording): return RecordingSet.from_recordings(items) if isinstance(first_item, SupervisionSegment): return SupervisionSet.from_segments(items) if isinstance(first_item, (Cut, MixedCut)): return CutSet.from_cuts(items) if isinstance(first_item, Features): raise ValueError("FeatureSet generic construction from iterable is not possible, as the config information " "would have been lost. Call FeatureSet.from_features() directly instead.") raise ValueError(f"Unknown type of manifest item: {first_item}") def load_manifest(path: Pathlike) -> Manifest: """Generic utility for reading an arbitrary manifest.""" raw_data = load_yaml(path) data_set = None for manifest_type in [RecordingSet, SupervisionSet, FeatureSet, CutSet]: try: data_set = manifest_type.from_dicts(raw_data) except Exception: pass if data_set is None: raise ValueError(f'Unknown type of manifest: {path}') return data_set
38
120
0.72686
f701ad039addc3139e0d9bb52293365f52a99e55
5,544
py
Python
tests/unit/modules/brew_test.py
skrobul/salt
ef7fb71082cce7a9783e00b9c65062fefae09263
[ "Apache-2.0" ]
2
2017-09-17T21:10:35.000Z
2019-08-26T03:00:12.000Z
tests/unit/modules/brew_test.py
skrobul/salt
ef7fb71082cce7a9783e00b9c65062fefae09263
[ "Apache-2.0" ]
null
null
null
tests/unit/modules/brew_test.py
skrobul/salt
ef7fb71082cce7a9783e00b9c65062fefae09263
[ "Apache-2.0" ]
3
2021-02-23T08:12:48.000Z
2021-02-23T08:13:13.000Z
# -*- coding: utf-8 -*- ''' :codeauthor: :email:`Nicole Thomas <nicole@satlstack.com>` ''' # Import Salt Testing Libs from salttesting import TestCase from salttesting.mock import MagicMock, patch from salttesting.helpers import ensure_in_syspath ensure_in_syspath('../../') # Import Salt Libs from salt.modules import brew # Global Variables brew.__context__ = {} brew.__salt__ = {} TAPS_STRING = 'homebrew/dupes\nhomebrew/science\nhomebrew/x11' TAPS_LIST = ['homebrew/dupes', 'homebrew/science', 'homebrew/x11'] HOMEBREW_BIN = '/usr/local/bin/brew' class BrewTestCase(TestCase): ''' TestCase for salt.modules.brew module ''' # '_list_taps' function tests: 1 def test_list_taps(self): ''' Tests the return of the list of taps ''' mock_taps = MagicMock(return_value=TAPS_STRING) with patch.dict(brew.__salt__, {'cmd.run': mock_taps}): self.assertEqual(brew._list_taps(), TAPS_LIST) # '_tap' function tests: 3 @patch('salt.modules.brew._list_taps', MagicMock(return_value=TAPS_LIST)) def test_tap_installed(self): ''' Tests if tap argument is already installed or not ''' self.assertTrue(brew._tap('homebrew/science')) @patch('salt.modules.brew._list_taps', MagicMock(return_value={})) def test_tap_failure(self): ''' Tests if the tap installation failed ''' mock_failure = MagicMock(return_value=1) with patch.dict(brew.__salt__, {'cmd.retcode': mock_failure}): self.assertFalse(brew._tap('homebrew/test')) @patch('salt.modules.brew._list_taps', MagicMock(return_value=TAPS_LIST)) def test_tap(self): ''' Tests adding unofficial Github repos to the list of brew taps ''' mock_success = MagicMock(return_value=0) with patch.dict(brew.__salt__, {'cmd.retcode': mock_success}): self.assertTrue(brew._tap('homebrew/test')) # '_homebrew_bin' function tests: 1 def test_homebrew_bin(self): ''' Tests the path to the homebrew binary ''' mock_path = MagicMock(return_value='/usr/local') with patch.dict(brew.__salt__, {'cmd.run': mock_path}): self.assertEqual(brew._homebrew_bin(), '/usr/local/bin/brew') # 'list_pkgs' function tests: 2 # Only tested a few basics # Full functionality should be tested in integration phase def test_list_pkgs_removed(self): ''' Tests removed implementation ''' self.assertEqual(brew.list_pkgs(removed=True), {}) def test_list_pkgs_versions_true(self): ''' Tests if pkg.list_pkgs is already in context and is a list ''' mock_context = {'foo': ['bar']} with patch.dict(brew.__context__, {'pkg.list_pkgs': mock_context}): self.assertEqual(brew.list_pkgs(versions_as_list=True), mock_context) # 'version' function tests: 1 def test_version(self): ''' Tests version name returned ''' mock_version = MagicMock(return_value='0.1.5') with patch.dict(brew.__salt__, {'pkg_resource.version': mock_version}): self.assertEqual(brew.version('foo'), '0.1.5') # 'latest_version' function tests: 0 # It has not been fully implemented # 'remove' function tests: 1 # Only tested a few basics # Full functionality should be tested in integration phase @patch('salt.modules.brew.list_pkgs', MagicMock(return_value={'test': '0.1.5'})) def test_remove(self): ''' Tests if package to be removed exists ''' mock_params = MagicMock(return_value=({'foo': None}, 'repository')) with patch.dict(brew.__salt__, {'pkg_resource.parse_targets': mock_params}): self.assertEqual(brew.remove('foo'), {}) # 'refresh_db' function tests: 2 @patch('salt.modules.brew._homebrew_bin', MagicMock(return_value=HOMEBREW_BIN)) def test_refresh_db_failure(self): ''' Tests an update of homebrew package repository failure ''' mock_user = MagicMock(return_value='foo') mock_failure = MagicMock(return_value=1) with patch.dict(brew.__salt__, {'file.get_user': mock_user, 'cmd.retcode': mock_failure}): self.assertFalse(brew.refresh_db()) @patch('salt.modules.brew._homebrew_bin', MagicMock(return_value=HOMEBREW_BIN)) def test_refresh_db(self): ''' Tests a successful update of homebrew package repository ''' mock_user = MagicMock(return_value='foo') mock_success = MagicMock(return_value=0) with patch.dict(brew.__salt__, {'file.get_user': mock_user, 'cmd.retcode': mock_success}): self.assertTrue(brew.refresh_db()) # 'install' function tests: 1 # Only tested a few basics # Full functionality should be tested in integration phase def test_install(self): ''' Tests if package to be installed exists ''' mock_params = MagicMock(return_value=[None, None]) with patch.dict(brew.__salt__, {'pkg_resource.parse_targets': mock_params}): self.assertEqual(brew.install('name=foo'), {}) if __name__ == '__main__': from integration import run_tests run_tests(BrewTestCase, needs_daemon=False)
33.197605
79
0.628066
f701dbb60581a894fa82d654ad38824ba276b7a5
4,113
py
Python
model/seg_models/pspnet.py
AceCoooool/segmentation
2f4d5ac193cab580eb8ba789e79db6dadcfecfd0
[ "MIT" ]
2
2019-06-08T13:09:08.000Z
2020-09-21T04:03:09.000Z
model/seg_models/pspnet.py
AceCoooool/segmentation
2f4d5ac193cab580eb8ba789e79db6dadcfecfd0
[ "MIT" ]
2
2019-05-20T11:56:02.000Z
2019-06-02T13:22:55.000Z
model/seg_models/pspnet.py
AceCoooool/segmentation
2f4d5ac193cab580eb8ba789e79db6dadcfecfd0
[ "MIT" ]
1
2020-09-22T03:55:39.000Z
2020-09-22T03:55:39.000Z
"""Pyramid Scene Parsing Network""" import os import torch from torch import nn import torch.nn.functional as F from model.seg_models.segbase import SegBaseModel from model.module.basic import _FCNHead __all__ = ['PSPNet', 'get_psp', 'get_psp_resnet101_voc', 'get_psp_resnet101_citys'] # head def _PSP1x1Conv(in_channels, out_channels): return nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True)) class _PyramidPooling(nn.Module): def __init__(self, in_channels): super(_PyramidPooling, self).__init__() out_channels = in_channels // 4 self.conv1 = _PSP1x1Conv(in_channels, out_channels) self.conv2 = _PSP1x1Conv(in_channels, out_channels) self.conv3 = _PSP1x1Conv(in_channels, out_channels) self.conv4 = _PSP1x1Conv(in_channels, out_channels) @staticmethod def pool(x, size): return F.adaptive_avg_pool2d(x, output_size=size) @staticmethod def upsample(x, h, w): return F.interpolate(x, (h, w), mode='bilinear', align_corners=True) def forward(self, x): _, _, h, w = x.shape feat1 = self.upsample(self.conv1(self.pool(x, 1)), h, w) feat2 = self.upsample(self.conv2(self.pool(x, 2)), h, w) feat3 = self.upsample(self.conv3(self.pool(x, 3)), h, w) feat4 = self.upsample(self.conv4(self.pool(x, 4)), h, w) return torch.cat([x, feat1, feat2, feat3, feat4], dim=1) class _PSPHead(nn.Module): def __init__(self, nclass, **kwargs): super(_PSPHead, self).__init__(**kwargs) self.psp = _PyramidPooling(2048) self.block = list() self.block.append(nn.Conv2d(4096, 512, kernel_size=3, padding=1, bias=False)) self.block.append(nn.BatchNorm2d(512)) self.block.append(nn.ReLU(inplace=True)) self.block.append(nn.Dropout(0.1)) self.block.append(nn.Conv2d(512, nclass, kernel_size=1)) self.block = nn.Sequential(*self.block) def forward(self, x): x = self.psp(x) return self.block(x) class PSPNet(SegBaseModel): def __init__(self, nclass, backbone='resnet50', aux=True, dilated=True, jpu=False, pretrained_base=True, base_size=520, crop_size=480, **kwargs): super(PSPNet, self).__init__(nclass, aux, backbone, base_size=base_size, dilated=dilated, jpu=jpu, crop_size=crop_size, pretrained_base=pretrained_base, **kwargs) self.head = _PSPHead(nclass, **kwargs) if self.aux: self.auxlayer = _FCNHead(1024, nclass, **kwargs) self.__setattr__('others', ['head', 'auxlayer'] if self.aux else ['head']) def forward(self, x): c3, c4 = self.base_forward(x) outputs = [] x = self.head(c4) x = F.interpolate(x, self._up_kwargs, mode='bilinear', align_corners=True) outputs.append(x) if self.aux: auxout = self.auxlayer(c3) auxout = F.interpolate(auxout, self._up_kwargs, mode='bilinear', align_corners=True) outputs.append(auxout) return tuple(outputs) def get_psp(dataset='pascal_voc', backbone='resnet101', pretrained=False, pretrained_base=True, jpu=False, root=os.path.expanduser('~/.torch/models'), **kwargs): acronyms = { 'pascal_voc': 'voc', 'citys': 'citys', } from data import datasets # infer number of classes model = PSPNet(datasets[dataset].NUM_CLASS, backbone=backbone, pretrained_base=pretrained_base, jpu=jpu, **kwargs) if pretrained: from model.model_store import get_model_file name = 'psp_%s_%s' % (backbone, acronyms[dataset]) name = name + '_jpu' if jpu else name model.load_state_dict(torch.load(get_model_file(name, root=root))) return model def get_psp_resnet101_voc(**kwargs): return get_psp('pascal_voc', 'resnet101', **kwargs) def get_psp_resnet101_citys(**kwargs): return get_psp('citys', 'resnet101', **kwargs)
36.39823
106
0.644299
f701f97e1f188d4e04e78e513ce8208e4d9f71ef
1,360
py
Python
deploy.py
blockchainhelppro/CelvinRost
aa2661747d06e4610928466521e4da1db77aeadc
[ "MIT" ]
2
2018-08-15T21:27:59.000Z
2018-08-21T17:56:12.000Z
deploy.py
blockchainhelppro/CelvinRost
aa2661747d06e4610928466521e4da1db77aeadc
[ "MIT" ]
null
null
null
deploy.py
blockchainhelppro/CelvinRost
aa2661747d06e4610928466521e4da1db77aeadc
[ "MIT" ]
1
2021-12-06T04:03:32.000Z
2021-12-06T04:03:32.000Z
import itertools import toposort from populus.utils.contracts import ( compute_direct_dependency_graph, compute_recursive_contract_dependencies, ) def compute_deploy_order(dependency_graph): """ Given a dictionary that maps contract to their dependencies, determine the overall dependency ordering for that set of contracts. """ return toposort.toposort_flatten(dict(dependency_graph)) def get_deploy_order(contracts_to_deploy, compiled_contracts): # Extract and dependencies that exist due to library linking. dependency_graph = compute_direct_dependency_graph(compiled_contracts.values()) global_deploy_order = compute_deploy_order(dependency_graph) # Compute the full set of dependencies needed to deploy the desired # contracts. all_deploy_dependencies = set(itertools.chain.from_iterable( compute_recursive_contract_dependencies(contract_name, dependency_graph) for contract_name in contracts_to_deploy )) all_contracts_to_deploy = all_deploy_dependencies.union(contracts_to_deploy) # Now compute the order that the contracts should be deployed based on # their dependencies. deploy_order = tuple( contract_name for contract_name in global_deploy_order if contract_name in all_contracts_to_deploy ) return deploy_order
33.170732
83
0.772794
f7020126c0821383f6a8544cd6c1e7094992bb87
25
py
Python
btd6_memory_info/generated/Unity/Collections/LowLevel/Unsafe/UnsafeUtility/unsafe_utility.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
btd6_memory_info/generated/Unity/Collections/LowLevel/Unsafe/UnsafeUtility/unsafe_utility.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
btd6_memory_info/generated/Unity/Collections/LowLevel/Unsafe/UnsafeUtility/unsafe_utility.py
56kyle/bloons_auto
419d55b51d1cddc49099593970adf1c67985b389
[ "MIT" ]
null
null
null
class UnsafeUtility: pass
25
25
0.88
f702024c3c01565b670bab7999a264ce4f0d7f8d
260
py
Python
slack_app/tasks.py
webscopeio/django-slack-app
65abb3717460c51a19c1238eb0572f25c47b2a42
[ "MIT" ]
3
2020-06-23T10:02:48.000Z
2020-10-28T11:59:28.000Z
slack_app/tasks.py
webscopeio/django-slack-integration
65abb3717460c51a19c1238eb0572f25c47b2a42
[ "MIT" ]
2
2020-02-17T11:42:03.000Z
2020-02-18T13:46:38.000Z
slack_app/tasks.py
webscopeio/django-slack-integration
65abb3717460c51a19c1238eb0572f25c47b2a42
[ "MIT" ]
4
2020-10-11T11:02:58.000Z
2022-03-14T08:23:42.000Z
from celery import shared_task from .signals import slack_event_received @shared_task def receive_slack_signal_task(sender, event_type, event_data, **data): slack_event_received.send(sender=sender, event_type=event_type, event_data=event_data, **data)
26
98
0.819231
f70218f2b4f389dac4b6b4a28a071cb1c97475d0
5,869
py
Python
office365/sharepoint/tenant/administration/tenant.py
wreiner/Office365-REST-Python-Client
476bbce4f5928a140b4f5d33475d0ac9b0783530
[ "MIT" ]
null
null
null
office365/sharepoint/tenant/administration/tenant.py
wreiner/Office365-REST-Python-Client
476bbce4f5928a140b4f5d33475d0ac9b0783530
[ "MIT" ]
null
null
null
office365/sharepoint/tenant/administration/tenant.py
wreiner/Office365-REST-Python-Client
476bbce4f5928a140b4f5d33475d0ac9b0783530
[ "MIT" ]
null
null
null
from office365.runtime.client_value_collection import ClientValueCollection from office365.runtime.queries.service_operation_query import ServiceOperationQuery from office365.runtime.resource_path import ResourcePath from office365.sharepoint.base_entity import BaseEntity from office365.sharepoint.tenant.administration.hubSiteProperties import HubSiteProperties from office365.sharepoint.tenant.administration.secondary_administrators_fields_data import \ SecondaryAdministratorsFieldsData from office365.sharepoint.tenant.administration.secondary_administrators_info import SecondaryAdministratorsInfo from office365.sharepoint.tenant.administration.site_properties import SiteProperties from office365.sharepoint.tenant.administration.site_properties_collection import SitePropertiesCollection from office365.sharepoint.tenant.administration.sitePropertiesEnumerableFilter import SitePropertiesEnumerableFilter from office365.sharepoint.tenant.administration.spo_operation import SpoOperation class Tenant(BaseEntity): def __init__(self, context): super().__init__(context, ResourcePath("Microsoft.Online.SharePoint.TenantAdministration.Tenant"), "Microsoft.Online.SharePoint.TenantAdministration") def get_site_secondary_administrators(self, site_id): """ Gets site collection administrators :type site_id: str """ return_type = ClientValueCollection(SecondaryAdministratorsInfo) payload = SecondaryAdministratorsFieldsData(site_id) qry = ServiceOperationQuery(self, "GetSiteSecondaryAdministrators", None, payload, "secondaryAdministratorsFieldsData", return_type) self.context.add_query(qry) return return_type def set_site_secondary_administrators(self, site_id, emails, names=None): """ Sets site collection administrators :type names: list[str] or None :type emails: list[str] :type site_id: str """ payload = SecondaryAdministratorsFieldsData(site_id, emails, names) qry = ServiceOperationQuery(self, "SetSiteSecondaryAdministrators", None, payload, "secondaryAdministratorsFieldsData", None) self.context.add_query(qry) return self def register_hub_site(self, site_url): """ Registers an existing site as a hub site. :param str site_url: :return: """ return_type = HubSiteProperties(self.context) params = {"siteUrl": site_url} qry = ServiceOperationQuery(self, "RegisterHubSite", None, params, None, return_type) self.context.add_query(qry) return return_type def unregister_hub_site(self, siteUrl): """ Unregisters a hub site so that it is no longer a hub site. :param str siteUrl: :return: """ params = {"siteUrl": siteUrl} qry = ServiceOperationQuery(self, "UnregisterHubSite", None, params, None, None) self.context.add_query(qry) return self def create_site(self, site_create_props): """Queues a site collection for creation with the specified properties. :param SiteCreationProperties site_create_props: A SiteCreationProperties object that contains the initial properties of the new site collection. """ result = SpoOperation(self.context) qry = ServiceOperationQuery(self, "CreateSite", None, site_create_props, "siteCreationProperties", result) self.context.add_query(qry) return result def remove_site(self, site_url): """Deletes the site with the specified URL :param str site_url: A string representing the URL of the site. """ result = SpoOperation(self.context) qry = ServiceOperationQuery(self, "removeSite", [site_url], None, None, result) self.context.add_query(qry) return result def remove_deleted_site(self, site_url): pass def restore_deleted_site(self, site_url): pass def get_site_properties_by_url(self, url, include_detail): """ :param str url: A string that represents the site URL. :param bool include_detail: A Boolean value that indicates whether to include all of the SPSite properties. """ site_props = SiteProperties(self.context) self._sites.add_child(site_props) payload = { 'url': url, 'includeDetail': include_detail } qry = ServiceOperationQuery(self, "getSitePropertiesByUrl", None, payload, None, site_props) self.context.add_query(qry) return site_props def get_site_properties_from_sharepoint_by_filters(self, _filter, start_index=0, include_detail=False): """ :param bool include_detail: :param int start_index: :param str _filter: """ site_props_col = SitePropertiesCollection(self.context) qry = ServiceOperationQuery(self, "getSitePropertiesFromSharePointByFilters", None, SitePropertiesEnumerableFilter(_filter, start_index, include_detail), "speFilter", site_props_col) self.context.add_query(qry) return site_props_col @property def root_site_url(self): """ :rtype: str or None """ return self.properties.get('RootSiteUrl', None) @property def _sites(self): """Gets a collection of sites.""" if self.is_property_available('sites'): return self.properties['sites'] else: return SitePropertiesCollection(self.context, ResourcePath("sites", self.resource_path))
39.655405
116
0.679332
f7022b106191f7e769f494a9e9e6e19c38892823
1,472
py
Python
qnarre/doc/justifier.py
quantapix/qnarre.com
f51d5945c20ef8182c4aa11f1b407d064c190c70
[ "MIT" ]
null
null
null
qnarre/doc/justifier.py
quantapix/qnarre.com
f51d5945c20ef8182c4aa11f1b407d064c190c70
[ "MIT" ]
null
null
null
qnarre/doc/justifier.py
quantapix/qnarre.com
f51d5945c20ef8182c4aa11f1b407d064c190c70
[ "MIT" ]
null
null
null
# Copyright 2019 Quantapix Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= class Justifier: def __init__(self, **kw): super().__init__(**kw) self.justs = [0] * 9 self.offsets = [(0, 0, 0, 1, 1, 1, 1, 1, 1), (0, -1, -2, 0, 0, 0, 1, 1, 1), (0, -1, -2, 0, -1, -2, 0, 0, 0)] def init_justs(self, justs): for i in justs: i = i // 3 os = self.offsets[i] if os: self.justs = [sum(x) for x in zip(self.justs, os)] self.offsets[i] = None def calc_just(self, justs): for i in justs: i = self.justs[i] + (i % 3) if i == 1: return 'justify-content-center' elif i > 1: return 'justify-content-end' return 'justify-content-start'
35.902439
79
0.536005
f7022f7075bdd6537b307688382d872a3f7fd177
53
py
Python
Interfaces/__init__.py
ahmadryan/TurbAn
b8866d103a2ca2f5fbad73bcd4416f19299f22b2
[ "BSD-2-Clause-Patent" ]
null
null
null
Interfaces/__init__.py
ahmadryan/TurbAn
b8866d103a2ca2f5fbad73bcd4416f19299f22b2
[ "BSD-2-Clause-Patent" ]
null
null
null
Interfaces/__init__.py
ahmadryan/TurbAn
b8866d103a2ca2f5fbad73bcd4416f19299f22b2
[ "BSD-2-Clause-Patent" ]
10
2019-03-22T15:30:12.000Z
2021-02-10T02:55:50.000Z
from . import Simulations from . import Spacecraft
17.666667
26
0.773585
f7023d3f50a4bcdd656f0e33b9e318facfcd714f
892
py
Python
kubi_ecs_logger/models/fields/destination.py
kumina/kubi_ecs_logger
64d9519e0759a24253a4edc53e0c024675033d1c
[ "BSD-3-Clause" ]
6
2019-12-15T12:47:06.000Z
2022-01-11T08:54:58.000Z
kubi_ecs_logger/models/fields/destination.py
kumina/kubi_ecs_logger
64d9519e0759a24253a4edc53e0c024675033d1c
[ "BSD-3-Clause" ]
null
null
null
kubi_ecs_logger/models/fields/destination.py
kumina/kubi_ecs_logger
64d9519e0759a24253a4edc53e0c024675033d1c
[ "BSD-3-Clause" ]
null
null
null
from marshmallow import fields from .field_set import FieldSet, FieldSetSchema class Destination(FieldSet): def __init__(self, address: str = None, bytes: int = None, domain: str = None, ip: str = None, mac: str = None, packets: int = None, port: int = None, *args, **kwargs): super().__init__(*args, **kwargs) self.address = address self.bytes = bytes self.domain = domain self.ip = ip self.mac = mac self.packets = packets self.port = port class DestinationSchema(FieldSetSchema): address = fields.String() bytes = fields.Integer() domain = fields.String() ip = fields.String() mac = fields.String() packets = fields.Integer() port = fields.Integer()
24.777778
47
0.533632
f7025167168843760aa99b53b10d6a7a0fc912e1
2,035
py
Python
.eggs/boto-2.48.0-py2.7.egg/boto/sdb/db/key.py
MQQ/git-bigstore
95f1e37fcda7fdce80502593cec31a44c604cf8a
[ "Apache-2.0" ]
null
null
null
.eggs/boto-2.48.0-py2.7.egg/boto/sdb/db/key.py
MQQ/git-bigstore
95f1e37fcda7fdce80502593cec31a44c604cf8a
[ "Apache-2.0" ]
null
null
null
.eggs/boto-2.48.0-py2.7.egg/boto/sdb/db/key.py
MQQ/git-bigstore
95f1e37fcda7fdce80502593cec31a44c604cf8a
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2006,2007,2008 Mitch Garnaat http://garnaat.org/ # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. class Key(object): @classmethod def from_path(cls, *args, **kwds): raise NotImplementedError("Paths are not currently supported") def __init__(self, encoded=None, obj=None): self.name = None if obj: self.id = obj.id self.kind = obj.kind() else: self.id = None self.kind = None def app(self): raise NotImplementedError("Applications are not currently supported") def kind(self): return self.kind def id(self): return self.id def name(self): raise NotImplementedError("Key Names are not currently supported") def id_or_name(self): return self.id def has_id_or_name(self): return self.id is not None def parent(self): raise NotImplementedError("Key parents are not currently supported") def __str__(self): return self.id_or_name()
33.916667
77
0.696314
f7025258811b22755058146106a8a59727a8d6a1
14,181
py
Python
lib/geomet/wkt.py
davasqueza/eriskco_conector_CloudSQL
99304b5eed06e9bba3646535a82d7fc98b0838b7
[ "Apache-2.0" ]
null
null
null
lib/geomet/wkt.py
davasqueza/eriskco_conector_CloudSQL
99304b5eed06e9bba3646535a82d7fc98b0838b7
[ "Apache-2.0" ]
null
null
null
lib/geomet/wkt.py
davasqueza/eriskco_conector_CloudSQL
99304b5eed06e9bba3646535a82d7fc98b0838b7
[ "Apache-2.0" ]
null
null
null
# Copyright 2013 Lars Butler & individual contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tokenize try: import StringIO except ImportError: import io StringIO = io INVALID_WKT_FMT = 'Invalid WKT: `%s`' def dump(obj, dest_file): """ Dump GeoJSON-like `dict` to WKT and write it to the `dest_file`. :param dict obj: A GeoJSON-like dictionary. It must at least the keys 'type' and 'coordinates'. :param dest_file: Open and writable file-like object. """ dest_file.write(dumps(obj)) def load(source_file): """ Load a GeoJSON `dict` object from a ``source_file`` containing WKT. :param source_file: Open and readable file-like object. :returns: A GeoJSON `dict` representing the geometry read from the file. """ return loads(source_file.read()) def dumps(obj, decimals=16): """ Dump a GeoJSON-like `dict` to a WKT string. """ geom_type = obj['type'] exporter = _dumps_registry.get(geom_type) if exporter is None: _unsupported_geom_type(geom_type) fmt = '%%.%df' % decimals return exporter(obj, fmt) def loads(string): """ Construct a GeoJSON `dict` from WKT (`string`). """ sio = StringIO.StringIO(string) # NOTE: This is not the intended purpose of `tokenize`, but it works. tokens = (x[1] for x in tokenize.generate_tokens(sio.readline)) tokens = _tokenize_wkt(tokens) geom_type = next(tokens) importer = _loads_registry.get(geom_type) if importer is None: _unsupported_geom_type(geom_type) return importer(tokens, string) def _tokenize_wkt(tokens): """ Since the tokenizer treats "-" and numeric strings as separate values, combine them and yield them as a single token. This utility encapsulates parsing of negative numeric values from WKT can be used generically in all parsers. """ negative = False for t in tokens: if t == '-': negative = True continue else: if negative: yield '-%s' % t else: yield t negative = False def _unsupported_geom_type(geom_type): raise ValueError("Unsupported geometry type '%s'" % geom_type) def _dump_point(obj, fmt): """ Dump a GeoJSON-like Point object to WKT. :param dict obj: A GeoJSON-like `dict` representing a Point. :param str fmt: Format string which indicates the number of digits to display after the decimal point when formatting coordinates. :returns: WKT representation of the input GeoJSON Point ``obj``. """ coords = obj['coordinates'] pt = 'POINT (%s)' % ' '.join(fmt % c for c in coords) return pt def _dump_linestring(obj, fmt): """ Dump a GeoJSON-like LineString object to WKT. Input parameters and return value are the LINESTRING equivalent to :func:`_dump_point`. """ coords = obj['coordinates'] ls = 'LINESTRING (%s)' ls %= ', '.join(' '.join(fmt % c for c in pt) for pt in coords) return ls def _dump_polygon(obj, fmt): """ Dump a GeoJSON-like Polygon object to WKT. Input parameters and return value are the POLYGON equivalent to :func:`_dump_point`. """ coords = obj['coordinates'] poly = 'POLYGON (%s)' rings = (', '.join(' '.join(fmt % c for c in pt) for pt in ring) for ring in coords) rings = ('(%s)' % r for r in rings) poly %= ', '.join(rings) return poly def _dump_multipoint(obj, fmt): """ Dump a GeoJSON-like MultiPoint object to WKT. Input parameters and return value are the MULTIPOINT equivalent to :func:`_dump_point`. """ coords = obj['coordinates'] mp = 'MULTIPOINT (%s)' points = (' '.join(fmt % c for c in pt) for pt in coords) # Add parens around each point. points = ('(%s)' % pt for pt in points) mp %= ', '.join(points) return mp def _dump_multilinestring(obj, fmt): """ Dump a GeoJSON-like MultiLineString object to WKT. Input parameters and return value are the MULTILINESTRING equivalent to :func:`_dump_point`. """ coords = obj['coordinates'] mlls = 'MULTILINESTRING (%s)' linestrs = ('(%s)' % ', '.join(' '.join(fmt % c for c in pt) for pt in linestr) for linestr in coords) mlls %= ', '.join(ls for ls in linestrs) return mlls def _dump_multipolygon(obj, fmt): """ Dump a GeoJSON-like MultiPolygon object to WKT. Input parameters and return value are the MULTIPOLYGON equivalent to :func:`_dump_point`. """ coords = obj['coordinates'] mp = 'MULTIPOLYGON (%s)' polys = ( # join the polygons in the multipolygon ', '.join( # join the rings in a polygon, # and wrap in parens '(%s)' % ', '.join( # join the points in a ring, # and wrap in parens '(%s)' % ', '.join( # join coordinate values of a vertex ' '.join(fmt % c for c in pt) for pt in ring) for ring in poly) for poly in coords) ) mp %= polys return mp def _dump_geometrycollection(obj, fmt): """ Dump a GeoJSON-like GeometryCollection object to WKT. Input parameters and return value are the GEOMETRYCOLLECTION equivalent to :func:`_dump_point`. The WKT conversions for each geometry in the collection are delegated to their respective functions. """ gc = 'GEOMETRYCOLLECTION (%s)' geoms = obj['geometries'] geoms_wkt = [] for geom in geoms: geom_type = geom['type'] geoms_wkt.append(_dumps_registry.get(geom_type)(geom, fmt)) gc %= ','.join(geoms_wkt) return gc def _load_point(tokens, string): """ :param tokens: A generator of string tokens for the input WKT, begining just after the geometry type. The geometry type is consumed before we get to here. For example, if :func:`loads` is called with the input 'POINT(0.0 1.0)', ``tokens`` would generate the following values: .. code-block:: python ['(', '0.0', '1.0', ')'] :param str string: The original WKT string. :returns: A GeoJSON `dict` Point representation of the WKT ``string``. """ if not next(tokens) == '(': raise ValueError(INVALID_WKT_FMT % string) coords = [] try: for t in tokens: if t == ')': break else: coords.append(float(t)) except tokenize.TokenError: raise ValueError(INVALID_WKT_FMT % string) return dict(type='Point', coordinates=coords) def _load_linestring(tokens, string): """ Has similar inputs and return value to to :func:`_load_point`, except is for handling LINESTRING geometry. :returns: A GeoJSON `dict` LineString representation of the WKT ``string``. """ if not next(tokens) == '(': raise ValueError(INVALID_WKT_FMT % string) # a list of lists # each member list represents a point coords = [] try: pt = [] for t in tokens: if t == ')': coords.append(pt) break elif t == ',': # it's the end of the point coords.append(pt) pt = [] else: pt.append(float(t)) except tokenize.TokenError: raise ValueError(INVALID_WKT_FMT % string) return dict(type='LineString', coordinates=coords) def _load_polygon(tokens, string): """ Has similar inputs and return value to to :func:`_load_point`, except is for handling POLYGON geometry. :returns: A GeoJSON `dict` Polygon representation of the WKT ``string``. """ open_parens = next(tokens), next(tokens) if not open_parens == ('(', '('): raise ValueError(INVALID_WKT_FMT % string) # coords contains a list of rings # each ring contains a list of points # each point is a list of 2-4 values coords = [] ring = [] on_ring = True try: pt = [] for t in tokens: if t == ')' and on_ring: # The ring is finished ring.append(pt) coords.append(ring) on_ring = False elif t == ')' and not on_ring: # it's the end of the polygon break elif t == '(': # it's a new ring ring = [] pt = [] on_ring = True elif t == ',' and on_ring: # it's the end of a point ring.append(pt) pt = [] elif t == ',' and not on_ring: # there's another ring. # do nothing pass else: pt.append(float(t)) except tokenize.TokenError: raise ValueError(INVALID_WKT_FMT % string) return dict(type='Polygon', coordinates=coords) def _load_multipoint(tokens, string): """ Has similar inputs and return value to to :func:`_load_point`, except is for handling MULTIPOINT geometry. :returns: A GeoJSON `dict` MultiPoint representation of the WKT ``string``. """ open_paren = next(tokens) if not open_paren == '(': raise ValueError(INVALID_WKT_FMT % string) coords = [] pt = [] paren_depth = 1 try: for t in tokens: if t == '(': paren_depth += 1 elif t == ')': paren_depth -= 1 if paren_depth == 0: break elif t == '': pass elif t == ',': # the point is done coords.append(pt) pt = [] else: pt.append(float(t)) except tokenize.TokenError: raise ValueError(INVALID_WKT_FMT % string) # Given the way we're parsing, we'll probably have to deal with the last # point after the loop if len(pt) > 0: coords.append(pt) return dict(type='MultiPoint', coordinates=coords) def _load_multipolygon(tokens, string): """ Has similar inputs and return value to to :func:`_load_point`, except is for handling MULTIPOLYGON geometry. :returns: A GeoJSON `dict` MultiPolygon representation of the WKT ``string``. """ open_paren = next(tokens) if not open_paren == '(': raise ValueError(INVALID_WKT_FMT % string) polygons = [] while True: try: poly = _load_polygon(tokens, string) polygons.append(poly['coordinates']) t = next(tokens) if t == ')': # we're done; no more polygons. break except StopIteration: # If we reach this, the WKT is not valid. raise ValueError(INVALID_WKT_FMT % string) return dict(type='MultiPolygon', coordinates=polygons) def _load_multilinestring(tokens, string): """ Has similar inputs and return value to to :func:`_load_point`, except is for handling MULTILINESTRING geometry. :returns: A GeoJSON `dict` MultiLineString representation of the WKT ``string``. """ open_paren = next(tokens) if not open_paren == '(': raise ValueError(INVALID_WKT_FMT % string) linestrs = [] while True: try: linestr = _load_linestring(tokens, string) linestrs.append(linestr['coordinates']) t = next(tokens) if t == ')': # we're done; no more linestrings. break except StopIteration: # If we reach this, the WKT is not valid. raise ValueError(INVALID_WKT_FMT % string) return dict(type='MultiLineString', coordinates=linestrs) def _load_geometrycollection(tokens, string): """ Has similar inputs and return value to to :func:`_load_point`, except is for handling GEOMETRYCOLLECTIONs. Delegates parsing to the parsers for the individual geometry types. :returns: A GeoJSON `dict` GeometryCollection representation of the WKT ``string``. """ open_paren = next(tokens) if not open_paren == '(': raise ValueError(INVALID_WKT_FMT % string) geoms = [] result = dict(type='GeometryCollection', geometries=geoms) while True: try: t = next(tokens) if t == ')': break elif t == ',': # another geometry still continue else: geom_type = t load_func = _loads_registry.get(geom_type) geom = load_func(tokens, string) geoms.append(geom) except StopIteration: raise ValueError(INVALID_WKT_FMT % string) return result _dumps_registry = { 'Point': _dump_point, 'LineString': _dump_linestring, 'Polygon': _dump_polygon, 'MultiPoint': _dump_multipoint, 'MultiLineString': _dump_multilinestring, 'MultiPolygon': _dump_multipolygon, 'GeometryCollection': _dump_geometrycollection, } _loads_registry = { 'POINT': _load_point, 'LINESTRING': _load_linestring, 'POLYGON': _load_polygon, 'MULTIPOINT': _load_multipoint, 'MULTILINESTRING': _load_multilinestring, 'MULTIPOLYGON': _load_multipolygon, 'GEOMETRYCOLLECTION': _load_geometrycollection, }
28.192843
79
0.586348
f70271444a8a7d243bda48a6efd9534b633a6c2b
1,169
py
Python
server/openapi_server/controllers/text_date_annotation_controller.py
cascadianblue/phi-annotator
0da6c102ec1068e6b15c613e2a90a78f79d15935
[ "Apache-2.0" ]
null
null
null
server/openapi_server/controllers/text_date_annotation_controller.py
cascadianblue/phi-annotator
0da6c102ec1068e6b15c613e2a90a78f79d15935
[ "Apache-2.0" ]
19
2021-07-29T03:14:38.000Z
2022-03-01T06:03:14.000Z
server/openapi_server/controllers/text_date_annotation_controller.py
cascadianblue/phi-annotator
0da6c102ec1068e6b15c613e2a90a78f79d15935
[ "Apache-2.0" ]
null
null
null
import connexion from openapi_server.annotator.phi_types import PhiType from openapi_server.get_annotations import get_annotations from openapi_server.models.error import Error # noqa: E501 from openapi_server.models.text_date_annotation_request import \ TextDateAnnotationRequest # noqa: E501 from openapi_server.models.text_date_annotation_response import \ TextDateAnnotationResponse # noqa: E501 def create_text_date_annotations(): # noqa: E501 """Annotate dates in a clinical note Return the date annotations found in a clinical note # noqa: E501 :rtype: TextDateAnnotations """ res = None status = None if connexion.request.is_json: try: annotation_request = TextDateAnnotationRequest.from_dict( connexion.request.get_json()) # noqa: E501 note = annotation_request.note annotations = get_annotations(note, phi_type=PhiType.DATE) res = TextDateAnnotationResponse(annotations) status = 200 except Exception as error: status = 500 res = Error("Internal error", status, str(error)) return res, status
35.424242
70
0.707442
f702747b82118bbd64d8fc67a01e1f638cbb45dd
26,042
py
Python
src/transformersX/models/cutoffbert/modeling_cutoffbert.py
stevezheng23/fewshot_nlp_pt
aaca4658aaa48a5a45dfd7d5ee7282d7f7c74be2
[ "Apache-2.0" ]
2
2021-08-06T05:43:55.000Z
2022-03-17T22:31:21.000Z
src/transformersX/models/cutoffbert/modeling_cutoffbert.py
stevezheng23/fewshot_nlp_pt
aaca4658aaa48a5a45dfd7d5ee7282d7f7c74be2
[ "Apache-2.0" ]
null
null
null
src/transformersX/models/cutoffbert/modeling_cutoffbert.py
stevezheng23/fewshot_nlp_pt
aaca4658aaa48a5a45dfd7d5ee7282d7f7c74be2
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch CUTOFFBERT model. """ import math import os import warnings import numpy as np from dataclasses import dataclass from typing import Optional, Tuple import torch import torch.utils.checkpoint import torch.nn.functional as F from packaging import version from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss, KLDivLoss from torch.distributions.beta import Beta from ...activations import ACT2FN from ...file_utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, DualPassageEncoderModelOutput, ) from ...modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from ...utils import logging from .configuration_cutoffbert import CutoffBertConfig from ..bert.modeling_bert import BertEmbeddings as CutoffBertEmbeddings from ..bert.modeling_bert import BertEncoder as CutoffBertEncoder from ..bert.modeling_bert import BertPooler as CutoffBertPooler logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "bert-base-uncased" _CONFIG_FOR_DOC = "CutoffBertConfig" _TOKENIZER_FOR_DOC = "CutoffBertTokenizer" CUTOFFBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "bert-base-uncased", "bert-large-uncased", "bert-base-cased", "bert-large-cased", "bert-base-multilingual-uncased", "bert-base-multilingual-cased", # See all BERT models at https://huggingface.co/models?filter=bert ] def load_tf_weights_in_cutoffbert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: assert ( pointer.shape == array.shape ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model class CutoffBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CutoffBertConfig load_tf_weights = load_tf_weights_in_cutoffbert base_model_prefix = "bert" _keys_to_ignore_on_load_missing = [r"position_ids"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) CUTOFFBERT_START_DOCSTRING = r""" This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ CUTOFFBERT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.BertTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare CutoffBert Model transformer outputting raw hidden-states without any specific head on top.", CUTOFFBERT_START_DOCSTRING, ) class CutoffBertModel(CutoffBertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in `Attention is all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration set to :obj:`True`. To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder` argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = CutoffBertEmbeddings(config) self.encoder = CutoffBertEncoder(config) self.pooler = CutoffBertPooler(config) if add_pooling_layer else None self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(CUTOFFBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """ CutoffBert Model transformer with a sequence classification head on top (a linear layer on top of the pooled output) + Cut-off data augmentation support. """, CUTOFFBERT_START_DOCSTRING, ) class CutoffBertForSequenceClassification(CutoffBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.cls_token_id = config.cls_token_id self.sep_token_id = config.sep_token_id self.mask_token_id = config.mask_token_id self.masking_prob = config.cutoff_masking_prob self.temperature = config.cutoff_temperature self.mask_loss_wgt = config.cutoff_mask_loss_wgt self.js_loss_wgt = config.cutoff_js_loss_wgt self.config = config self.bert = CutoffBertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() def _apply_cutoff(self, inputs): masked_inputs = inputs.clone() valid_masking_indices = (inputs != self.cls_token_id) & (inputs != self.sep_token_id) random_masking_indices = torch.bernoulli(torch.full(inputs.shape, self.masking_prob, device=inputs.device)).bool() masking_indices = random_masking_indices & valid_masking_indices masked_inputs[masking_indices] = self.mask_token_id return masked_inputs @add_start_docstrings_to_model_forward(CUTOFFBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is None: outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = self.dropout(outputs[1]) logits = self.classifier(pooled_output) if not return_dict: return (logits,) + outputs[2:] return SequenceClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) b, l = input_ids.size() masked_input_ids = self._apply_cutoff(input_ids.clone()) flatten_input_ids = torch.stack((input_ids, masked_input_ids), dim=1).reshape(-1, l) flatten_attention_mask = attention_mask.unsqueeze(1).expand(-1, 2, -1).reshape(-1, l) if attention_mask is not None else None flatten_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, 2, -1).reshape(-1, l) if token_type_ids is not None else None flatten_position_ids = position_ids.unsqueeze(1).expand(-1, 2, -1).reshape(-1, l) if position_ids is not None else None flatten_inputs_embeds = inputs_embeds.unsqueeze(1).expand(-1, 2, -1, -1).reshape(-1, l, self.config.hidden_size) if inputs_embeds is not None else None flatten_outputs = self.bert( flatten_input_ids, attention_mask=flatten_attention_mask, token_type_ids=flatten_token_type_ids, position_ids=flatten_position_ids, head_mask=head_mask, inputs_embeds=flatten_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) flatten_pooled_output = self.dropout(flatten_outputs[1]) flatten_logits = self.classifier(flatten_pooled_output) logits, masked_logits = flatten_logits.reshape(b, 2, self.config.num_labels).chunk(2, dim=1) logits, masked_logits = logits.squeeze(dim=1).contiguous(), masked_logits.squeeze(dim=1).contiguous() loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if self.mask_loss_wgt is not None and self.mask_loss_wgt > 0.0: mask_loss = loss_fct(masked_logits.view(-1, self.num_labels), labels.view(-1)) loss += mask_loss * self.mask_loss_wgt if self.js_loss_wgt is not None and self.js_loss_wgt > 0.0: kl_loss_fct = KLDivLoss(reduction="batchmean") src_logits, trg_logits = logits, masked_logits mean_logits = (src_logits + trg_logits) * 0.5 src_loss = kl_loss_fct( F.log_softmax(src_logits / self.temperature, dim=-1), F.softmax(mean_logits / self.temperature, dim=-1) ) * (self.temperature ** 2) trg_loss = kl_loss_fct( F.log_softmax(trg_logits / self.temperature, dim=-1), F.softmax(mean_logits / self.temperature, dim=-1) ) * (self.temperature ** 2) js_loss = (src_loss + trg_loss) * 0.5 loss += js_loss * self.js_loss_wgt if not return_dict: return (loss, logits) return SequenceClassifierOutput( loss=loss, logits=logits, )
44.9
213
0.672183
f7028f059677a83cf6bbecfd7df23260f585b48f
785
py
Python
sdk/media/azure-mgmt-media/azure/mgmt/media/aio/__init__.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
1
2022-02-01T18:50:12.000Z
2022-02-01T18:50:12.000Z
sdk/media/azure-mgmt-media/azure/mgmt/media/aio/__init__.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
null
null
null
sdk/media/azure-mgmt-media/azure/mgmt/media/aio/__init__.py
vincenttran-msft/azure-sdk-for-python
348b56f9f03eeb3f7b502eed51daf494ffff874d
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from ._azure_media_services import AzureMediaServices __all__ = ['AzureMediaServices'] # `._patch.py` is used for handwritten extensions to the generated code # Example: https://github.com/Azure/azure-sdk-for-python/blob/main/doc/dev/customize_code/how-to-patch-sdk-code.md from ._patch import patch_sdk patch_sdk()
49.0625
114
0.636943
f702939c992f164058c986345c72844ea2c3df0a
2,852
py
Python
tests/data_tests/writer_tests/json_writer_test.py
alueschow/polymatheia
e46a38b3686139bbab3a2fcfaa914d4ca938654e
[ "MIT" ]
3
2020-09-15T15:15:34.000Z
2021-06-15T10:35:07.000Z
tests/data_tests/writer_tests/json_writer_test.py
alueschow/polymatheia
e46a38b3686139bbab3a2fcfaa914d4ca938654e
[ "MIT" ]
7
2020-09-03T12:53:34.000Z
2020-10-05T09:14:29.000Z
tests/data_tests/writer_tests/json_writer_test.py
alueschow/polymatheia
e46a38b3686139bbab3a2fcfaa914d4ca938654e
[ "MIT" ]
2
2020-10-13T09:12:21.000Z
2021-04-15T14:19:06.000Z
"""Tests for the :mod:`~polymatheia.data.writer` package.""" import json import os from shutil import rmtree from polymatheia.data import NavigableDict from polymatheia.data.writer import JSONWriter DOCUMENTS = [NavigableDict(r) for r in [ { 'id': '1', 'name': { 'first': 'A', 'last': 'Person' }, 'age': 32, 'special tags': 'The first' }, { 'id': '2', 'name': { 'first': ['Another', {'abbr': 'Nameless'}], 'last': 'Parrot' }, 'age': 23, }, { 'id': '3', 'name': { 'first': 'The', 'last': 'Last' }, 'age': 65, }, ]] def test_local_json_writing(): """Test writing to the local filesystem.""" rmtree('tmp/json_writer_test', ignore_errors=True) writer = JSONWriter('tmp/json_writer_test', 'id') writer.write(DOCUMENTS) count = 0 for basepath, _, filenames in os.walk('tmp/json_writer_test'): for filename in filenames: if filename.endswith('.json'): count = count + len(filenames) with open(os.path.join(basepath, filename)) as in_f: doc = json.load(in_f) assert 'id' in doc assert 'name' in doc if doc['id'] == '2': assert 'first' in doc['name'] assert len(doc['name']['first']) == 2 else: assert 'first' in doc['name'] assert 'last' in doc['name'] assert 'age' in doc if doc['id'] == '1': assert 'special tags' in doc assert count == 3 def test_local_json_writing_pre_split_id_path(): """Test writing to the local filesystem.""" rmtree('tmp/json_writer_test', ignore_errors=True) writer = JSONWriter('tmp/json_writer_test', ['id']) writer.write(DOCUMENTS) count = 0 for basepath, _, filenames in os.walk('tmp/json_writer_test'): for filename in filenames: if filename.endswith('.json'): count = count + len(filenames) with open(os.path.join(basepath, filename)) as in_f: doc = json.load(in_f) assert 'id' in doc assert 'name' in doc if doc['id'] == '2': assert 'first' in doc['name'] assert len(doc['name']['first']) == 2 else: assert 'first' in doc['name'] assert 'last' in doc['name'] assert 'age' in doc if doc['id'] == '1': assert 'special tags' in doc assert count == 3
31.688889
68
0.471599

Dataset Card for "the-stack-vault"

More Information needed

Downloads last month
44
Edit dataset card