Back to all datasets
Dataset: winogrande 🏷
Update winogrande.py on GitHub

How to load this dataset directly with the πŸ€—/datasets library:

				
Copy to clipboard
from datasets import load_dataset dataset = load_dataset("winogrande")

Tags  

None yet.

You can create or edit a tag set using our tagging app.

Models trained or fine-tuned on winogrande

None yet. Start fine-tuning now =)



Dataset Card for "winogrande"

Table of Contents

Dataset Description

Dataset Summary

WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern 2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a fill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires commonsense reasoning.

Supported Tasks

More Information Needed

Languages

More Information Needed

Dataset Structure

We show detailed information for up to 5 configurations of the dataset.

Data Instances

winogrande_debiased

  • Size of downloaded dataset files: 3.24 MB
  • Size of the generated dataset: 1.52 MB
  • Total amount of disk used: 4.76 MB

An example of 'train' looks as follows.

winogrande_l

  • Size of downloaded dataset files: 3.24 MB
  • Size of the generated dataset: 1.63 MB
  • Total amount of disk used: 4.87 MB

An example of 'validation' looks as follows.

winogrande_m

  • Size of downloaded dataset files: 3.24 MB
  • Size of the generated dataset: 0.69 MB
  • Total amount of disk used: 3.93 MB

An example of 'validation' looks as follows.

winogrande_s

  • Size of downloaded dataset files: 3.24 MB
  • Size of the generated dataset: 0.45 MB
  • Total amount of disk used: 3.69 MB

An example of 'validation' looks as follows.

winogrande_xl

  • Size of downloaded dataset files: 3.24 MB
  • Size of the generated dataset: 5.32 MB
  • Total amount of disk used: 8.56 MB

An example of 'train' looks as follows.

Data Fields

The data fields are the same among all splits.

winogrande_debiased

  • sentence: a string feature.
  • option1: a string feature.
  • option2: a string feature.
  • answer: a string feature.

winogrande_l

  • sentence: a string feature.
  • option1: a string feature.
  • option2: a string feature.
  • answer: a string feature.

winogrande_m

  • sentence: a string feature.
  • option1: a string feature.
  • option2: a string feature.
  • answer: a string feature.

winogrande_s

  • sentence: a string feature.
  • option1: a string feature.
  • option2: a string feature.
  • answer: a string feature.

winogrande_xl

  • sentence: a string feature.
  • option1: a string feature.
  • option2: a string feature.
  • answer: a string feature.

Data Splits Sample Size

name train validation test
winogrande_debiased 9248 1267 1767
winogrande_l 10234 1267 1767
winogrande_m 2558 1267 1767
winogrande_s 640 1267 1767
winogrande_xl 40398 1267 1767

Dataset Creation

Curation Rationale

More Information Needed

Source Data

More Information Needed

Annotations

More Information Needed

Personal and Sensitive Information

More Information Needed

Considerations for Using the Data

Social Impact of Dataset

More Information Needed

Discussion of Biases

More Information Needed

Other Known Limitations

More Information Needed

Additional Information

Dataset Curators

More Information Needed

Licensing Information

More Information Needed

Citation Information

@InProceedings{ai2:winogrande,
title = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},
authors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi
},
year={2019}
}