File size: 12,083 Bytes
b97e541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
from pathlib import Path
import os
from utils import load_json, write_json, dir_of_this_file, load_csv
import torch
# import numpy as np
from tqdm import tqdm
sn_2_imgdir = {
e[0]: Path("/your_path/colmap_results/data/") / e[1]
for e in load_csv(dir_of_this_file(__file__) / "seed_db.csv")
}
SAVE_ROOT = dir_of_this_file(__file__) / "gt_cams"
def write_cams(sn, all_cams):
output_fn = SAVE_ROOT / f"{sn}.json"
write_json(output_fn, all_cams)
print(sn, end=',')
print(output_fn)
def list_scene_fnames(sn):
return list(sorted(os.listdir(sn_2_imgdir[sn])))
def break_scenes(raw):
raw = raw.strip().split('\n')
return [e.strip() for e in raw]
def strip_sn_prefix(sn_name):
parts = sn_name.split("_")[1:]
return "_".join(parts)
def invert_trans(trans_T):
assert trans_T.shape == (4, 4)
R = trans_T[0:3, 0:3]
t = trans_T[0:3, 3:4]
new_T = torch.eye(4, dtype=trans_T.dtype, device=trans_T.device)
new_T[0:3, 0:3] = R.T
new_T[0:3, 3:4] = -R.T @ t
return new_T
def hike():
''' # these are problematic scenes
hike_garden2: cams without their images!
'''
scenes = '''
hike_forest1
hike_forest2
hike_forest3
hike_garden3
hike_indoor
hike_playground
hike_university1
hike_university2
hike_university3
hike_university4
'''
scenes = break_scenes(scenes)
root = Path("/your_path/colmap_results/data/statichike")
# for sn in scenes:
# gt_path = f"/your_path/colmap_results/data/statichike/{strip_sn_prefix(sn)}/sparse"
# gt_path = Path(gt_path)
# assert not (gt_path / "1").is_dir()
# print(sn, end=',')
# print(str(gt_path / "0"))
# return
for sn in scenes:
img_fnames = list_scene_fnames(sn)
raw = load_json(
root / strip_sn_prefix(sn) / "transforms.json"
)
frames = list(sorted(raw['frames'], key=lambda x: x['file_path']))
cam_dir = root / strip_sn_prefix(sn) / "sparse"
assert not (cam_dir / "1").is_dir()
fr_fnames = [Path(fr['file_path']).name for fr in frames]
c2ws_b = torch.tensor(
[fr['transform_matrix'] for fr in frames],
dtype=torch.float64, device="cuda"
)
# from opengl to opencv
c2ws_b[:, :, 1] *= -1
c2ws_b[:, :, 2] *= -1
try:
from metrics import load_colmap_db_cams, pose_stats_suite
# from read_colmap_model import read_colmap_w2c
# names, intrs, Rs, ts = read_colmap_w2c(cam_dir / "0")
names, _, c2ws_a = load_colmap_db_cams(cam_dir / "0", ".bin", return_all=True)
assert fr_fnames == names
res = pose_stats_suite(c2ws_a, c2ws_b)
assert res['ate'] < 1e-5
assert res['auc_p'][0] > 99.99
del names, c2ws_a, res
'''
the c2w in frames are globally shifted for some reason.
check that after alignment, error is small.
'''
except FileNotFoundError as e:
print(e)
# some imgs are discarded in gt cams
assert set(fr_fnames).issubset(set(img_fnames))
# if len(fr_fnames) != len(img_fnames):
# print(f"{sn} img {len(img_fnames)} vs cam {len(fr_fnames)}")
c2ws_b = c2ws_b.cpu().float().tolist()
all_cams = []
for i in range(len(frames)):
all_cams.append({
'fname': fr_fnames[i],
'c2w': c2ws_b[i]
})
write_cams(sn, all_cams)
def process_meganerf_cam(cam):
c2w = cam['c2w'] # [3, 4] opengl: x-right, y-up, z-back
x, y, z, t = torch.unbind(c2w, dim=1)
c2w = torch.stack([x, -y, -z, t], dim=-1) # opengl -> opencv
full_c2w = torch.eye(4)
full_c2w[0:3] = c2w
return full_c2w
def mill19():
scenes = """
mill19_building
mill19_rubble
"""
scenes = break_scenes(scenes)
for sn in scenes:
img_fnames = list_scene_fnames(sn)
cam_dir = Path(f"/your_path/colmap_results/data/mill19/{strip_sn_prefix(sn)}-pixsfm/train/metadata")
all_cams = []
for im in tqdm(img_fnames):
cam_file = cam_dir / Path(im).with_suffix(".pt")
assert cam_file.is_file()
cam = torch.load(cam_file, weights_only=True)
c2w = process_meganerf_cam(cam)
all_cams.append({
'fname': im,
'c2w': c2w.tolist()
})
write_cams(sn, all_cams)
def urban_scene():
from string import Template
scenes = '''
urbn_Campus
urbn_Residence
urbn_Sci-Art
'''
scenes = break_scenes(scenes)
for sn in scenes:
_sn = strip_sn_prefix(sn).lower()
lns = load_csv(
f"/your_path/colmap_results/data/urbanscene3d_meganerf/{_sn}-pixsfm/mappings.txt"
)
cam_dir_template = Template(
"/your_path/colmap_results/data/urbanscene3d_meganerf/${sn}-pixsfm/${split}/metadata"
)
im_2_camfn = {e[0]: e[1] for e in lns}
all_cams = []
keys = list(sorted(im_2_camfn.keys()))
for k in tqdm(keys):
# default assumes it's under train/
camfn = Path(cam_dir_template.substitute(sn=_sn, split="train")) / im_2_camfn[k]
if not camfn.is_file():
camfn = Path(cam_dir_template.substitute(sn=_sn, split="val")) / im_2_camfn[k]
assert camfn.is_file()
cam = torch.load(camfn, weights_only=True)
c2w = process_meganerf_cam(cam)
all_cams.append({
'fname': k,
'c2w': c2w.tolist()
})
write_cams(sn, all_cams)
def nerf_osr():
scenes = """
nosr_europa
nosr_lk2
nosr_lwp
nosr_rathaus
nosr_schloss
nosr_st
nosr_stjacob
nosr_stjohann
"""
scenes = break_scenes(scenes)
for sn in scenes:
img_fnames = list_scene_fnames(sn)
raw = load_json(
f"/your_path/colmap_results/data/nerfosr_original/{strip_sn_prefix(sn)}/final/kai_cameras.json"
)
all_cams = []
for im in img_fnames:
cam = raw[im]
w2c = torch.tensor(cam['W2C'], dtype=torch.float64).reshape(4, 4)
c2w = invert_trans(w2c)
all_cams.append({
'fname': im,
'c2w': c2w.tolist()
})
write_cams(sn, all_cams)
def drone_deploy():
# ruin1 has missing images. ignore that scene
scenes = """
dploy_house1
dploy_house2
dploy_house3
dploy_house4
dploy_pipes1
dploy_ruins1
dploy_ruins2
dploy_ruins3
dploy_tower1
dploy_tower2
"""
scenes = break_scenes(scenes)
for sn in scenes:
img_fnames = list_scene_fnames(sn)
raw = load_json(
f"/your_path/colmap_results/data/dronedeploy/{strip_sn_prefix(sn)}/cameras.json"
)
# keys: 'frames', 'fl_x', 'fl_y', 'k1', 'k2', 'p1', 'p2', 'k3', 'k4', 'k5', 'k6', 'cx', 'cy', 'w', 'h',
# 'camera_angle_x', 'camera_angle_y', 'aabb_scale'
frames = raw['frames']
frames = list(sorted(frames, key=lambda x: x['file_path']))
# print(f"{sn}, {len(img_fnames)} vs {len(frames)}")
_fnames = [
Path(e['file_path']).name
for e in frames
]
has_missing_img = False
for e in _fnames:
if e not in img_fnames:
has_missing_img = True
# print(f"warn! img for {e} missing")
if has_missing_img:
# ruin1 has missing images. ignore that scene
continue
# some imgs don't have gt cam
# assert img_fnames == _fnames
all_cams = []
for fr in frames:
c2w = torch.tensor(fr['transform_matrix'])
x, y, z, t = torch.unbind(c2w, dim=1)
c2w = torch.stack([x, -y, -z, t], dim=-1) # opengl -> opencv
all_cams.append({
'fname': Path(fr['file_path']).name,
'c2w': c2w.tolist()
})
write_cams(sn, all_cams)
def mipnerf360():
scenes = """
m360_flowers
m360_room
m360_counter
m360_stump
m360_kitchen
m360_garden
m360_bicycle
m360_bonsai
m360_treehill
"""
scenes = break_scenes(scenes)
for sn in scenes:
path = f"/your_path/nerfbln_dset/mipnerf360/{strip_sn_prefix(sn)}/sparse/0"
print(sn, end=',')
print(path)
def eyeful():
scenes = """
eft_apartment
eft_kitchen
"""
# def make_filter_f(sensor_prefix):
# return lambda fr: fr['cameraId'].split('/')[0] != sensor_prefix
scenes = break_scenes(scenes)
for sn in scenes:
frames = load_json(
Path(f"/your_path/colmap_results/data/eyefultower/{strip_sn_prefix(sn)}/cameras.json")
)['KRT']
frames = sorted(frames, key=lambda x: x['cameraId'])
# # filter low overlap cameras
# prefix_to_discard = {
# 'eft_apartment': '31',
# 'eft_kitchen': '28'
# }[sn]
# n_before = len(frames)
# frames = list(filter(make_filter_f(prefix_to_discard), frames))
# n_after = len(frames)
# print(f"{n_before} vs {n_after}")
all_cams = []
for fr in tqdm(frames):
w2c = torch.tensor(fr['T']).T # note the transpose. col_major -> row major
c2w = invert_trans(w2c)
all_cams.append({
'fname': f"{fr['cameraId']}.jpg",
'c2w': c2w.tolist()
})
write_cams(sn, all_cams)
# I renamed the gt jsons that discarded low overlap cams as
# eft_apartment_remove_31.json
# eft_kitchen_remove_28.json
# they are created on 25.03.10 14:54
# the other gt files are made from 25.02.23 - 23.02.26
def tnt():
scenes = '''
tnt_advn_Auditorium
tnt_advn_Ballroom
tnt_advn_Courtroom
tnt_advn_Museum
tnt_advn_Palace
tnt_advn_Temple
tnt_intrmdt_Family
tnt_intrmdt_Francis
tnt_intrmdt_Horse
tnt_intrmdt_Lighthouse
tnt_intrmdt_M60
tnt_intrmdt_Panther
tnt_intrmdt_Playground
tnt_intrmdt_Train
tnt_trng_Barn
tnt_trng_Caterpillar
tnt_trng_Church
tnt_trng_Courthouse
tnt_trng_Ignatius
tnt_trng_Meetingroom
tnt_trng_Truck
'''
scenes = break_scenes(scenes)
for sn in scenes:
_sn = sn.split('_')[-1].lower()
gt_cam_path = f"/your_path/nerfbln_dset/tnt/{_sn}/sparse" # no 0/
print(sn, end=',')
print(gt_cam_path)
def eth3d_dslr():
scenes = '''
eth3d_dslr_botanical_garden
eth3d_dslr_boulders
eth3d_dslr_bridge
eth3d_dslr_courtyard
eth3d_dslr_delivery_area
eth3d_dslr_door
eth3d_dslr_electro
eth3d_dslr_exhibition_hall
eth3d_dslr_facade
eth3d_dslr_kicker
eth3d_dslr_lecture_room
eth3d_dslr_living_room
eth3d_dslr_lounge
eth3d_dslr_meadow
eth3d_dslr_observatory
eth3d_dslr_office
eth3d_dslr_old_computer
eth3d_dslr_pipes
eth3d_dslr_playground
eth3d_dslr_relief
eth3d_dslr_relief_2
eth3d_dslr_statue
eth3d_dslr_terrace
eth3d_dslr_terrace_2
eth3d_dslr_terrains
'''
scenes = break_scenes(scenes)
# # used to edit db_mapping.csv
# for sn in scenes:
# db_path = f"/your_path/sfm_workspace/runs_db/d_{sn}/database.db"
# assert Path(db_path).is_file()
# print(sn, end=',')
# print(db_path)
# return
for sn in scenes:
_sn = sn[len('eth3d_dslr_'):]
gt_cam_path = f"/your_path/colmap_results/data/eth3d_dslr/{_sn}/dslr_calibration_undistorted"
assert Path(gt_cam_path).is_dir()
print(sn, end=',')
print(gt_cam_path)
def main():
# hike()
# mill19()
# nerf_osr()
# mipnerf360()
# eyeful()
# tnt()
# urban_scene()
# drone_deploy()
# eth3d_dslr()
pass
if __name__ == "__main__":
main()
|