File size: 20,534 Bytes
bdbcbee
 
 
 
0f7b9e2
bdbcbee
9afaa83
bdbcbee
 
6311bc5
bdbcbee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb5a4ea
bdbcbee
 
 
 
 
 
 
 
 
 
 
c2b4647
 
 
bdbcbee
 
 
 
 
 
 
c2b4647
 
 
bdbcbee
c2b4647
bdbcbee
 
 
 
 
c2b4647
bdbcbee
 
 
 
 
 
 
d034c0d
bdbcbee
 
 
 
a875142
 
bdbcbee
 
a875142
 
 
 
 
 
 
 
 
 
 
 
 
 
eb5a4ea
bdbcbee
 
 
 
 
 
 
 
 
 
 
 
 
 
fa7d3b9
bdbcbee
 
a875142
bdbcbee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa7d3b9
bdbcbee
 
 
eb5a4ea
bdbcbee
 
 
 
 
 
 
6311bc5
bdbcbee
d034c0d
bdbcbee
 
 
 
 
 
 
 
6311bc5
bdbcbee
a875142
d034c0d
bdbcbee
 
 
 
c2b4647
bdbcbee
 
 
 
 
d034c0d
bdbcbee
 
 
 
 
 
 
 
6311bc5
bdbcbee
a875142
d034c0d
bdbcbee
 
 
c2b4647
bdbcbee
 
 
 
c2b4647
 
 
bdbcbee
 
 
c2b4647
 
 
 
bdbcbee
 
c2b4647
bdbcbee
 
 
 
 
 
c2b4647
bdbcbee
 
c2b4647
bdbcbee
 
6311bc5
 
 
 
 
 
 
 
0f7b9e2
6311bc5
c2b4647
bdbcbee
 
 
c2b4647
bdbcbee
 
 
 
 
 
 
 
 
c2b4647
bdbcbee
 
 
fa7d3b9
d034c0d
 
 
 
fa7d3b9
bdbcbee
 
c2b4647
d034c0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2b4647
a875142
 
 
 
 
 
 
 
bdbcbee
d034c0d
a875142
 
 
 
eb5a4ea
d034c0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa7d3b9
a875142
eb5a4ea
a875142
 
 
 
 
 
 
 
 
 
 
eb5a4ea
a875142
 
eb5a4ea
 
 
a875142
 
eb5a4ea
 
 
a875142
 
eb5a4ea
a875142
 
 
eb5a4ea
a875142
 
 
c2b4647
bdbcbee
a875142
bdbcbee
c2b4647
a875142
c2b4647
a875142
bdbcbee
a875142
eb5a4ea
a875142
 
bdbcbee
a875142
c2b4647
bdbcbee
 
 
c2b4647
bdbcbee
 
 
 
 
 
d034c0d
bdbcbee
 
 
 
a875142
 
bdbcbee
c2b4647
bdbcbee
 
 
c2b4647
bdbcbee
 
 
c2b4647
bdbcbee
c2b4647
 
 
bdbcbee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2b4647
bdbcbee
c2b4647
bdbcbee
 
c2b4647
bdbcbee
 
c2b4647
bdbcbee
 
 
 
6311bc5
 
bdbcbee
 
 
 
 
c2b4647
bdbcbee
d034c0d
 
 
 
 
bdbcbee
 
 
 
c2b4647
bdbcbee
d034c0d
 
 
 
 
bdbcbee
 
 
 
c2b4647
bdbcbee
 
 
 
 
c2b4647
bdbcbee
 
 
 
 
c2b4647
bdbcbee
 
 
 
 
c2b4647
bdbcbee
 
 
 
 
c2b4647
bdbcbee
 
 
 
 
c2b4647
bdbcbee
 
 
 
af9c7a0
 
 
 
 
 
 
bdbcbee
 
 
 
c2b4647
bdbcbee
 
 
 
c2b4647
bdbcbee
a875142
 
 
 
 
 
 
 
 
 
 
 
c2b4647
bdbcbee
c2b4647
bdbcbee
 
 
 
 
d034c0d
bdbcbee
 
 
 
 
 
 
 
af9c7a0
bdbcbee
a875142
d034c0d
bdbcbee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6311bc5
bdbcbee
 
c2b4647
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
# /// script
# requires-python = ">=3.10"
# dependencies = [
#     "datasets",
#     "flashinfer-python",
#     "huggingface-hub[hf_transfer]",
#     "hf-xet>= 1.1.7",
#     "torch",
#     "transformers",
#     "vllm>=0.8.5",
# ]
#
# ///
"""
Generate responses for prompts in a dataset using vLLM for efficient GPU inference.

This script loads a dataset from Hugging Face Hub containing chat-formatted messages,
applies the model's chat template, generates responses using vLLM, and saves the
results back to the Hub with a comprehensive dataset card.

Example usage:
    # Local execution with auto GPU detection
    uv run generate-responses.py \\
        username/input-dataset \\
        username/output-dataset \\
        --messages-column messages

    # With custom model and sampling parameters
    uv run generate-responses.py \\
        username/input-dataset \\
        username/output-dataset \\
        --model-id meta-llama/Llama-3.1-8B-Instruct \\
        --temperature 0.9 \\
        --top-p 0.95 \\
        --max-tokens 2048

    # HF Jobs execution (see script output for full command)
    hf jobs uv run --flavor a100x4 ...
"""

import argparse
import logging
import os
import sys
from datetime import datetime
from typing import Optional

from datasets import load_dataset
from huggingface_hub import DatasetCard, get_token, login
from torch import cuda
from tqdm.auto import tqdm
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

# Enable HF Transfer for faster downloads
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)


def check_gpu_availability() -> int:
    """Check if CUDA is available and return the number of GPUs."""
    if not cuda.is_available():
        logger.error("CUDA is not available. This script requires a GPU.")
        logger.error(
            "Please run on a machine with NVIDIA GPU or use HF Jobs with GPU flavor."
        )
        sys.exit(1)

    num_gpus = cuda.device_count()
    for i in range(num_gpus):
        gpu_name = cuda.get_device_name(i)
        gpu_memory = cuda.get_device_properties(i).total_memory / 1024**3
        logger.info(f"GPU {i}: {gpu_name} with {gpu_memory:.1f} GB memory")

    return num_gpus


def create_dataset_card(
    source_dataset: str,
    model_id: str,
    messages_column: str,
    prompt_column: Optional[str],
    sampling_params: SamplingParams,
    tensor_parallel_size: int,
    num_examples: int,
    generation_time: str,
    num_skipped: int = 0,
    max_model_len_used: Optional[int] = None,
) -> str:
    """Create a comprehensive dataset card documenting the generation process."""
    filtering_section = ""
    if num_skipped > 0:
        skip_percentage = (num_skipped / num_examples) * 100
        processed = num_examples - num_skipped
        filtering_section = f"""

### Filtering Statistics

- **Total Examples**: {num_examples:,}
- **Processed**: {processed:,} ({100 - skip_percentage:.1f}%)
- **Skipped (too long)**: {num_skipped:,} ({skip_percentage:.1f}%)
- **Max Model Length Used**: {max_model_len_used:,} tokens

Note: Prompts exceeding the maximum model length were skipped and have empty responses."""

    return f"""---
tags:
- generated
- vllm
- uv-script
---

# Generated Responses Dataset

This dataset contains generated responses for prompts from [{source_dataset}](https://huggingface.co/datasets/{source_dataset}).

## Generation Details

- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
- **Input Column**: `{prompt_column if prompt_column else messages_column}` ({"plain text prompts" if prompt_column else "chat messages"})
- **Model**: [{model_id}](https://huggingface.co/{model_id})
- **Number of Examples**: {num_examples:,}
- **Generation Date**: {generation_time}{filtering_section}

### Sampling Parameters

- **Temperature**: {sampling_params.temperature}
- **Top P**: {sampling_params.top_p}
- **Top K**: {sampling_params.top_k}
- **Min P**: {sampling_params.min_p}
- **Max Tokens**: {sampling_params.max_tokens}
- **Repetition Penalty**: {sampling_params.repetition_penalty}

### Hardware Configuration

- **Tensor Parallel Size**: {tensor_parallel_size}
- **GPU Configuration**: {tensor_parallel_size} GPU(s)

## Dataset Structure

The dataset contains all columns from the source dataset plus:
- `response`: The generated response from the model

## Generation Script

Generated using the vLLM inference script from [uv-scripts/vllm](https://huggingface.co/datasets/uv-scripts/vllm).

To reproduce this generation:

```bash
uv run https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-responses.py \\
    {source_dataset} \\
    <output-dataset> \\
    --model-id {model_id} \\
    {"--prompt-column " + prompt_column if prompt_column else "--messages-column " + messages_column} \\
    --temperature {sampling_params.temperature} \\
    --top-p {sampling_params.top_p} \\
    --top-k {sampling_params.top_k} \\
    --max-tokens {sampling_params.max_tokens}{f" \\\\\\n    --max-model-len {max_model_len_used}" if max_model_len_used else ""}
```
"""


def main(
    src_dataset_hub_id: str,
    output_dataset_hub_id: str,
    model_id: str = "Qwen/Qwen3-30B-A3B-Instruct-2507",
    messages_column: str = "messages",
    prompt_column: Optional[str] = None,
    output_column: str = "response",
    temperature: float = 0.7,
    top_p: float = 0.8,
    top_k: int = 20,
    min_p: float = 0.0,
    max_tokens: int = 16384,
    repetition_penalty: float = 1.0,
    gpu_memory_utilization: float = 0.90,
    max_model_len: Optional[int] = None,
    tensor_parallel_size: Optional[int] = None,
    skip_long_prompts: bool = True,
    max_samples: Optional[int] = None,
    hf_token: Optional[str] = None,
):
    """
    Main generation pipeline.

    Args:
        src_dataset_hub_id: Input dataset on Hugging Face Hub
        output_dataset_hub_id: Where to save results on Hugging Face Hub
        model_id: Hugging Face model ID for generation
        messages_column: Column name containing chat messages
        prompt_column: Column name containing plain text prompts (alternative to messages_column)
        output_column: Column name for generated responses
        temperature: Sampling temperature
        top_p: Top-p sampling parameter
        top_k: Top-k sampling parameter
        min_p: Minimum probability threshold
        max_tokens: Maximum tokens to generate
        repetition_penalty: Repetition penalty parameter
        gpu_memory_utilization: GPU memory utilization factor
        max_model_len: Maximum model context length (None uses model default)
        tensor_parallel_size: Number of GPUs to use (auto-detect if None)
        skip_long_prompts: Skip prompts exceeding max_model_len instead of failing
        max_samples: Maximum number of samples to process (None for all)
        hf_token: Hugging Face authentication token
    """
    generation_start_time = datetime.now().isoformat()

    # GPU check and configuration
    num_gpus = check_gpu_availability()
    if tensor_parallel_size is None:
        tensor_parallel_size = num_gpus
        logger.info(
            f"Auto-detected {num_gpus} GPU(s), using tensor_parallel_size={tensor_parallel_size}"
        )
    else:
        logger.info(f"Using specified tensor_parallel_size={tensor_parallel_size}")
        if tensor_parallel_size > num_gpus:
            logger.warning(
                f"Requested {tensor_parallel_size} GPUs but only {num_gpus} available"
            )

    # Authentication - try multiple methods
    HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") or get_token()

    if not HF_TOKEN:
        logger.error("No HuggingFace token found. Please provide token via:")
        logger.error("  1. --hf-token argument")
        logger.error("  2. HF_TOKEN environment variable")
        logger.error("  3. Run 'huggingface-cli login' or use login() in Python")
        sys.exit(1)

    logger.info("HuggingFace token found, authenticating...")
    login(token=HF_TOKEN)

    # Initialize vLLM
    logger.info(f"Loading model: {model_id}")
    vllm_kwargs = {
        "model": model_id,
        "tensor_parallel_size": tensor_parallel_size,
        "gpu_memory_utilization": gpu_memory_utilization,
    }
    if max_model_len is not None:
        vllm_kwargs["max_model_len"] = max_model_len
        logger.info(f"Using max_model_len={max_model_len}")

    llm = LLM(**vllm_kwargs)

    # Load tokenizer for chat template
    logger.info("Loading tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(model_id)

    # Create sampling parameters
    sampling_params = SamplingParams(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        min_p=min_p,
        max_tokens=max_tokens,
        repetition_penalty=repetition_penalty,
    )

    # Load dataset
    logger.info(f"Loading dataset: {src_dataset_hub_id}")
    dataset = load_dataset(src_dataset_hub_id, split="train")

    # Apply max_samples if specified
    if max_samples is not None and max_samples < len(dataset):
        logger.info(f"Limiting dataset to {max_samples} samples")
        dataset = dataset.select(range(max_samples))

    total_examples = len(dataset)
    logger.info(f"Dataset loaded with {total_examples:,} examples")

    # Determine which column to use and validate
    if prompt_column:
        # Use prompt column mode
        if prompt_column not in dataset.column_names:
            logger.error(
                f"Column '{prompt_column}' not found. Available columns: {dataset.column_names}"
            )
            sys.exit(1)
        logger.info(f"Using prompt column mode with column: '{prompt_column}'")
        use_messages = False
    else:
        # Use messages column mode
        if messages_column not in dataset.column_names:
            logger.error(
                f"Column '{messages_column}' not found. Available columns: {dataset.column_names}"
            )
            sys.exit(1)
        logger.info(f"Using messages column mode with column: '{messages_column}'")
        use_messages = True

    # Get effective max length for filtering
    if max_model_len is not None:
        effective_max_len = max_model_len
    else:
        # Get model's default max length
        effective_max_len = llm.llm_engine.model_config.max_model_len
    logger.info(f"Using effective max model length: {effective_max_len}")

    # Process messages and apply chat template
    logger.info("Preparing prompts...")
    all_prompts = []
    valid_prompts = []
    valid_indices = []
    skipped_info = []

    for i, example in enumerate(tqdm(dataset, desc="Processing prompts")):
        if use_messages:
            # Messages mode: use existing chat messages
            messages = example[messages_column]
            # Apply chat template
            prompt = tokenizer.apply_chat_template(
                messages, tokenize=False, add_generation_prompt=True
            )
        else:
            # Prompt mode: convert plain text to messages format
            user_prompt = example[prompt_column]
            messages = [{"role": "user", "content": user_prompt}]
            # Apply chat template
            prompt = tokenizer.apply_chat_template(
                messages, tokenize=False, add_generation_prompt=True
            )

        all_prompts.append(prompt)

        # Count tokens if filtering is enabled
        if skip_long_prompts:
            tokens = tokenizer.encode(prompt)
            if len(tokens) <= effective_max_len:
                valid_prompts.append(prompt)
                valid_indices.append(i)
            else:
                skipped_info.append((i, len(tokens)))
        else:
            valid_prompts.append(prompt)
            valid_indices.append(i)

    # Log filtering results
    if skip_long_prompts and skipped_info:
        logger.warning(
            f"Skipped {len(skipped_info)} prompts that exceed max_model_len ({effective_max_len} tokens)"
        )
        logger.info("Skipped prompt details (first 10):")
        for idx, (prompt_idx, token_count) in enumerate(skipped_info[:10]):
            logger.info(
                f"  - Example {prompt_idx}: {token_count} tokens (exceeds by {token_count - effective_max_len})"
            )
        if len(skipped_info) > 10:
            logger.info(f"  ... and {len(skipped_info) - 10} more")

        skip_percentage = (len(skipped_info) / total_examples) * 100
        if skip_percentage > 10:
            logger.warning(f"WARNING: {skip_percentage:.1f}% of prompts were skipped!")

    if not valid_prompts:
        logger.error("No valid prompts to process after filtering!")
        sys.exit(1)

    # Generate responses - vLLM handles batching internally
    logger.info(f"Starting generation for {len(valid_prompts):,} valid prompts...")
    logger.info("vLLM will handle batching and scheduling automatically")

    outputs = llm.generate(valid_prompts, sampling_params)

    # Extract generated text and create full response list
    logger.info("Extracting generated responses...")
    responses = [""] * total_examples  # Initialize with empty strings

    for idx, output in enumerate(outputs):
        original_idx = valid_indices[idx]
        response = output.outputs[0].text.strip()
        responses[original_idx] = response

    # Add responses to dataset
    logger.info("Adding responses to dataset...")
    dataset = dataset.add_column(output_column, responses)

    # Create dataset card
    logger.info("Creating dataset card...")
    card_content = create_dataset_card(
        source_dataset=src_dataset_hub_id,
        model_id=model_id,
        messages_column=messages_column,
        prompt_column=prompt_column,
        sampling_params=sampling_params,
        tensor_parallel_size=tensor_parallel_size,
        num_examples=total_examples,
        generation_time=generation_start_time,
        num_skipped=len(skipped_info) if skip_long_prompts else 0,
        max_model_len_used=effective_max_len if skip_long_prompts else None,
    )

    # Push dataset to hub
    logger.info(f"Pushing dataset to: {output_dataset_hub_id}")
    dataset.push_to_hub(output_dataset_hub_id, token=HF_TOKEN)

    # Push dataset card
    card = DatasetCard(card_content)
    card.push_to_hub(output_dataset_hub_id, token=HF_TOKEN)

    logger.info("✅ Generation complete!")
    logger.info(
        f"Dataset available at: https://huggingface.co/datasets/{output_dataset_hub_id}"
    )


if __name__ == "__main__":
    if len(sys.argv) > 1:
        parser = argparse.ArgumentParser(
            description="Generate responses for dataset prompts using vLLM",
            formatter_class=argparse.RawDescriptionHelpFormatter,
            epilog="""
Examples:
  # Basic usage with default Qwen model
  uv run generate-responses.py input-dataset output-dataset
  
  # With custom model and parameters
  uv run generate-responses.py input-dataset output-dataset \\
    --model-id meta-llama/Llama-3.1-8B-Instruct \\
    --temperature 0.9 \\
    --max-tokens 2048
  
  # Force specific GPU configuration
  uv run generate-responses.py input-dataset output-dataset \\
    --tensor-parallel-size 2 \\
    --gpu-memory-utilization 0.95
  
  # Using environment variable for token
  HF_TOKEN=hf_xxx uv run generate-responses.py input-dataset output-dataset
            """,
        )

        parser.add_argument(
            "src_dataset_hub_id",
            help="Input dataset on Hugging Face Hub (e.g., username/dataset-name)",
        )
        parser.add_argument(
            "output_dataset_hub_id", help="Output dataset name on Hugging Face Hub"
        )
        parser.add_argument(
            "--model-id",
            type=str,
            default="Qwen/Qwen3-30B-A3B-Instruct-2507",
            help="Model to use for generation (default: Qwen3-30B-A3B-Instruct-2507)",
        )
        parser.add_argument(
            "--messages-column",
            type=str,
            default="messages",
            help="Column containing chat messages (default: messages)",
        )
        parser.add_argument(
            "--prompt-column",
            type=str,
            help="Column containing plain text prompts (alternative to --messages-column)",
        )
        parser.add_argument(
            "--output-column",
            type=str,
            default="response",
            help="Column name for generated responses (default: response)",
        )
        parser.add_argument(
            "--max-samples",
            type=int,
            help="Maximum number of samples to process (default: all)",
        )
        parser.add_argument(
            "--temperature",
            type=float,
            default=0.7,
            help="Sampling temperature (default: 0.7)",
        )
        parser.add_argument(
            "--top-p",
            type=float,
            default=0.8,
            help="Top-p sampling parameter (default: 0.8)",
        )
        parser.add_argument(
            "--top-k",
            type=int,
            default=20,
            help="Top-k sampling parameter (default: 20)",
        )
        parser.add_argument(
            "--min-p",
            type=float,
            default=0.0,
            help="Minimum probability threshold (default: 0.0)",
        )
        parser.add_argument(
            "--max-tokens",
            type=int,
            default=16384,
            help="Maximum tokens to generate (default: 16384)",
        )
        parser.add_argument(
            "--repetition-penalty",
            type=float,
            default=1.0,
            help="Repetition penalty (default: 1.0)",
        )
        parser.add_argument(
            "--gpu-memory-utilization",
            type=float,
            default=0.90,
            help="GPU memory utilization factor (default: 0.90)",
        )
        parser.add_argument(
            "--max-model-len",
            type=int,
            help="Maximum model context length (default: model's default)",
        )
        parser.add_argument(
            "--tensor-parallel-size",
            type=int,
            help="Number of GPUs to use (default: auto-detect)",
        )
        parser.add_argument(
            "--hf-token",
            type=str,
            help="Hugging Face token (can also use HF_TOKEN env var)",
        )
        parser.add_argument(
            "--skip-long-prompts",
            action="store_true",
            default=True,
            help="Skip prompts that exceed max_model_len instead of failing (default: True)",
        )
        parser.add_argument(
            "--no-skip-long-prompts",
            dest="skip_long_prompts",
            action="store_false",
            help="Fail on prompts that exceed max_model_len",
        )

        args = parser.parse_args()

        main(
            src_dataset_hub_id=args.src_dataset_hub_id,
            output_dataset_hub_id=args.output_dataset_hub_id,
            model_id=args.model_id,
            messages_column=args.messages_column,
            prompt_column=args.prompt_column,
            output_column=args.output_column,
            temperature=args.temperature,
            top_p=args.top_p,
            top_k=args.top_k,
            min_p=args.min_p,
            max_tokens=args.max_tokens,
            repetition_penalty=args.repetition_penalty,
            gpu_memory_utilization=args.gpu_memory_utilization,
            max_model_len=args.max_model_len,
            tensor_parallel_size=args.tensor_parallel_size,
            skip_long_prompts=args.skip_long_prompts,
            max_samples=args.max_samples,
            hf_token=args.hf_token,
        )
    else:
        # Show HF Jobs example when run without arguments
        print("""
vLLM Response Generation Script
==============================

This script requires arguments. For usage information:
    uv run generate-responses.py --help

Example HF Jobs command with multi-GPU:
    # If you're logged in with huggingface-cli, token will be auto-detected
    hf jobs uv run \\
        --flavor l4x4 \\
        https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-responses.py \\
        username/input-dataset \\
        username/output-dataset \\
        --messages-column messages \\
        --model-id Qwen/Qwen3-30B-A3B-Instruct-2507 \\
        --temperature 0.7 \\
        --max-tokens 16384
        """)