vLLM Inference Scripts
Ready-to-run UV scripts for GPU-accelerated inference using vLLM.
These scripts use UV's inline script metadata to automatically manage dependencies - just run with uv run and everything installs automatically!
π Available Scripts
classify-dataset.py
Batch text classification using BERT-style encoder models (e.g., BERT, RoBERTa, DeBERTa, ModernBERT) with vLLM's optimized inference engine.
Note: This script is specifically for encoder-only classification models, not generative LLMs.
Features:
- π High-throughput batch processing
 - π·οΈ Automatic label mapping from model config
 - π Confidence scores for predictions
 - π€ Direct integration with Hugging Face Hub
 
Usage:
# Local execution (requires GPU)
uv run classify-dataset.py \
    davanstrien/ModernBERT-base-is-new-arxiv-dataset \
    username/input-dataset \
    username/output-dataset \
    --inference-column text \
    --batch-size 10000
HF Jobs execution:
hf jobs uv run \
    --flavor l4x1 \
    --image vllm/vllm-openai \
    https://huggingface.co/datasets/uv-scripts/vllm/resolve/main/classify-dataset.py \
    davanstrien/ModernBERT-base-is-new-arxiv-dataset \
    username/input-dataset \
    username/output-dataset \
    --inference-column text \
    --batch-size 100000
generate-responses.py
Generate responses for prompts using generative LLMs (e.g., Llama, Qwen, Mistral) with vLLM's high-performance inference engine.
Features:
- π¬ Automatic chat template application
 - π Support for both chat messages and plain text prompts
 - π Multi-GPU tensor parallelism support
 - π Smart filtering for prompts exceeding context length
 - π Comprehensive dataset cards with generation metadata
 - β‘ HF Transfer enabled for fast model downloads
 - ποΈ Full control over sampling parameters
 - π― Sample limiting with 
--max-samplesfor testing 
Usage:
# With chat-formatted messages (default)
uv run generate-responses.py \
    username/input-dataset \
    username/output-dataset \
    --messages-column messages \
    --max-tokens 1024
# With plain text prompts (NEW!)
uv run generate-responses.py \
    username/input-dataset \
    username/output-dataset \
    --prompt-column question \
    --max-tokens 1024 \
    --max-samples 100
# With custom model and parameters
uv run generate-responses.py \
    username/input-dataset \
    username/output-dataset \
    --model-id meta-llama/Llama-3.1-8B-Instruct \
    --prompt-column text \
    --temperature 0.9 \
    --top-p 0.95 \
    --max-model-len 8192
HF Jobs execution (multi-GPU):
hf jobs uv run \
    --flavor l4x4 \
    --image vllm/vllm-openai \
    -e UV_PRERELEASE=if-necessary \
    -s HF_TOKEN=hf_*** \
    https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-responses.py \
    davanstrien/cards_with_prompts \
    davanstrien/test-generated-responses \
    --model-id Qwen/Qwen3-30B-A3B-Instruct-2507 \
    --gpu-memory-utilization 0.9 \
    --max-tokens 600 \
    --max-model-len 8000
Multi-GPU Tensor Parallelism
- Auto-detects available GPUs by default
 - Use 
--tensor-parallel-sizeto manually specify - Required for models larger than single GPU memory (e.g., 30B+ models)
 
Handling Long Contexts
The generate-responses.py script includes smart prompt filtering:
- Default behavior: Skips prompts exceeding max_model_len
 - Use 
--max-model-len: Limit context to reduce memory usage - Use 
--no-skip-long-prompts: Fail on long prompts instead of skipping - Skipped prompts receive empty responses and are logged
 
π About vLLM
vLLM is a high-throughput inference engine optimized for:
- Fast model serving with PagedAttention
 - Efficient batch processing
 - Support for various model architectures
 - Seamless integration with Hugging Face models
 
π§ Technical Details
UV Script Benefits
- Zero setup: Dependencies install automatically on first run
 - Reproducible: Locked dependencies ensure consistent behavior
 - Self-contained: Everything needed is in the script file
 - Direct execution: Run from local files or URLs
 
Dependencies
Scripts use UV's inline metadata for automatic dependency management:
# /// script
# requires-python = ">=3.10"
# dependencies = [
#     "datasets",
#     "flashinfer-python",
#     "huggingface-hub[hf_transfer]",
#     "torch",
#     "transformers",
#     "vllm",
# ]
# ///
For bleeding-edge features, use the UV_PRERELEASE=if-necessary environment variable to allow pre-release versions when needed.
Docker Image
For HF Jobs, we recommend the official vLLM Docker image: vllm/vllm-openai
This image includes:
- Pre-installed CUDA libraries
 - vLLM and all dependencies
 - UV package manager
 - Optimized for GPU inference
 
Environment Variables
HF_TOKEN: Your Hugging Face authentication token (auto-detected if logged in)UV_PRERELEASE=if-necessary: Allow pre-release packages when requiredHF_HUB_ENABLE_HF_TRANSFER=1: Automatically enabled for faster downloads
π Resources
- Downloads last month
 - 37