File size: 16,135 Bytes
71422c7 1998767 e51e840 ece51a4 71422c7 33327d8 80e4090 33327d8 80e4090 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
---
license: cc-by-sa-4.0
language:
- ceb
- da
- de
- en
- hr
- pt
- ru
- sk
- sr
- sv
- tl
- zh
task_categories:
- token-classification
dataset_info:
- config_name: ceb_gja
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 39540
num_examples: 188
download_size: 30395
dataset_size: 39540
- config_name: da_ddt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 2304027
num_examples: 4383
- name: validation
num_bytes: 293562
num_examples: 564
- name: test
num_bytes: 285813
num_examples: 565
download_size: 2412623
dataset_size: 2883402
- config_name: de_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 641819
num_examples: 1000
download_size: 501924
dataset_size: 641819
- config_name: en_ewt
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 6133506
num_examples: 12543
- name: validation
num_bytes: 782835
num_examples: 2001
- name: test
num_bytes: 785361
num_examples: 2077
download_size: 5962747
dataset_size: 7701702
- config_name: en_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 600666
num_examples: 1000
download_size: 462120
dataset_size: 600666
- config_name: hr_set
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 4523323
num_examples: 6914
- name: validation
num_bytes: 656738
num_examples: 960
- name: test
num_bytes: 719703
num_examples: 1136
download_size: 4620262
dataset_size: 5899764
- config_name: pt_bosque
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 4839200
num_examples: 7018
- name: validation
num_bytes: 802880
num_examples: 1172
- name: test
num_bytes: 780768
num_examples: 1167
download_size: 4867264
dataset_size: 6422848
- config_name: pt_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 661453
num_examples: 1000
download_size: 507495
dataset_size: 661453
- config_name: ru_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 795294
num_examples: 1000
download_size: 669214
dataset_size: 795294
- config_name: sk_snk
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 2523121
num_examples: 8483
- name: validation
num_bytes: 409448
num_examples: 1060
- name: test
num_bytes: 411686
num_examples: 1061
download_size: 2597877
dataset_size: 3344255
- config_name: sr_set
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 2174631
num_examples: 3328
- name: validation
num_bytes: 349276
num_examples: 536
- name: test
num_bytes: 336065
num_examples: 520
download_size: 2248325
dataset_size: 2859972
- config_name: sv_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 588564
num_examples: 1000
download_size: 464252
dataset_size: 588564
- config_name: sv_talbanken
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 2027488
num_examples: 4303
- name: validation
num_bytes: 291774
num_examples: 504
- name: test
num_bytes: 615209
num_examples: 1219
download_size: 2239432
dataset_size: 2934471
- config_name: tl_trg
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 23671
num_examples: 128
download_size: 18546
dataset_size: 23671
- config_name: tl_ugnayan
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 31732
num_examples: 94
download_size: 23941
dataset_size: 31732
- config_name: zh_gsd
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 2747999
num_examples: 3997
- name: validation
num_bytes: 355515
num_examples: 500
- name: test
num_bytes: 335893
num_examples: 500
download_size: 2614866
dataset_size: 3439407
- config_name: zh_gsdsimp
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: train
num_bytes: 2747863
num_examples: 3997
- name: validation
num_bytes: 352423
num_examples: 500
- name: test
num_bytes: 335869
num_examples: 500
download_size: 2611290
dataset_size: 3436155
- config_name: zh_pud
features:
- name: idx
dtype: string
- name: text
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
- name: annotator
sequence: string
splits:
- name: test
num_bytes: 607418
num_examples: 1000
download_size: 460357
dataset_size: 607418
---
# Dataset Card for Universal NER
### Dataset Summary
Universal NER (UNER) is an open, community-driven initiative aimed at creating gold-standard benchmarks for Named Entity Recognition (NER) across multiple languages.
The primary objective of UNER is to offer high-quality, cross-lingually consistent annotations, thereby standardizing and advancing multilingual NER research.
UNER v1 includes 19 datasets with named entity annotations, uniformly structured across 13 diverse languages.
### Supported Tasks and Leaderboards
- `token-classification`: The dataset can be used to train token classification models of the NER variety. Some pre-trained models released as part of the UNER v1 release can be found at https://huggingface.co/universalner
### Languages
The dataset contains data in the following languages:
- Cebuano (`ceb`)
- Danish (`da`)
- German (`de`)
- English (`en`)
- Croatian (`hr`)
- Portuguese (`pt`)
- Russian (`ru`)
- Slovak (`sk`)
- Serbian (`sr`)
- Swedish (`sv`)
- Tagalog (`tl`)
- Chinese (`zh`)
## Dataset Structure
### Data Instances
An example from the `UNER_English-PUD` test set looks as follows
```json
{
"idx": "n01016-0002",
"text": "Several analysts have suggested Huawei is best placed to benefit from Samsung's setback.",
"tokens": [
"Several", "analysts", "have", "suggested", "Huawei",
"is", "best", "placed", "to", "benefit",
"from", "Samsung", "'s", "setback", "."
],
"ner_tags": [
"O", "O", "O", "O", "B-ORG",
"O", "O", "O", "O", "O",
"O", "B-ORG", "O", "O", "O"
],
"annotator": "blvns"
}
```
### Data Fields
- `idx`: the ID uniquely identifying the sentence (instance), if available.
- `text`: the full text of the sentence (instance)
- `tokens`: the text of the sentence (instance) split into tokens. Note that this split is inhereted from Universal Dependencies
- `ner_tags`: the NER tags associated with each one of the `tokens`
- `annotator`: the annotator who provided the `ner_tags` for this particular instance
### Data Splits
TBD
## Dataset Creation
### Curation Rationale
TBD
### Source Data
#### Initial Data Collection and Normalization
We selected the Universal Dependency (UD) corpora as the default base texts for annotation due to their extensive language coverage, pre-existing data collection, cleaning, tokenization, and permissive licensing.
This choice accelerates our process by providing a robust foundation.
By adding another annotation layer to the already detailed UD annotations, we facilitate verification within our project and enable comprehensive multilingual research across the entire NLP pipeline.
Given that UD annotations operate at the word level, we adopted the BIO annotation schema (specifically IOB2).
In this schema, words forming the beginning (B) or inside (I) part of an entity (X ∈ {PER, LOC, ORG}) are annotated accordingly, while all other words receive an O tag.
To maintain consistency, we preserve UD's original tokenization.
Although UD serves as the default data source for UNER, the project is not restricted to UD corpora, particularly for languages not currently represented in UD.
The primary requirement for inclusion in the UNER corpus is adherence to the UNER tagging guidelines.
Additionally, we are open to converting existing NER efforts on UD treebanks to align with UNER.
In this initial release, we have included four datasets transferred from other manual annotation efforts on UD sources (for DA, HR, ARABIZI, and SR).
#### Who are the source language producers?
This information can be found on per-dataset basis for each of the source Universal Dependencies datasets.
### Annotations
#### Annotation process
The data has been annotated by
#### Who are the annotators?
For the initial UNER annotation effort, we recruited volunteers from the multilingual NLP community via academic networks and social media.
The annotators were coordinated through a Slack workspace, with all contributors working on a voluntary basis.
We assume that annotators are either native speakers of the language they annotate or possess a high level of proficiency, although no formal language tests were conducted.
The selection of the 13 dataset languages in the first UNER release was driven by the availability of annotators.
As the project evolves, we anticipate the inclusion of additional languages and datasets as more annotators become available.
### Personal and Sensitive Information
TBD
## Considerations for Using the Data
### Social Impact of Dataset
TBD
### Discussion of Biases
TBD
### Other Known Limitations
TBD
## Additional Information
### Dataset Curators
List the people involved in collecting the dataset and their affiliation(s). If funding information is known, include it here.
### Licensing Information
The UNER v1 is released under the terms of the [Creative Commons Attribution-ShareAlike 4.0 International](https://creativecommons.org/licenses/by-sa/4.0/) license
### Citation Information
If you use this dataset, please cite the corresponding [paper](https://aclanthology.org/2024.naacl-long.243):
```
@inproceedings{
mayhew2024universal,
title={Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark},
author={Stephen Mayhew and Terra Blevins and Shuheng Liu and Marek Šuppa and Hila Gonen and Joseph Marvin Imperial and Börje F. Karlsson and Peiqin Lin and Nikola Ljubešić and LJ Miranda and Barbara Plank and Arij Riab and Yuval Pinter}
booktitle={Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)},
year={2024},
url={https://aclanthology.org/2024.naacl-long.243/}
}
``` |