Datasets:

Modalities:
Text
Formats:
json
Languages:
Portuguese
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 1,750 Bytes
d7a7458
 
201d20d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7a7458
201d20d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
license: cc-by-sa-4.0
language:
  - pt
task_categories:
- token-classification
dataset_info:
- config_name: pt_pud
  splits:
  - name: test
    num_examples: 999
- config_name: pt_bosque
  splits:
  - name: test
    num_examples: 1166
  - name: dev
    num_examples: 1171
  - name: train
    num_examples: 4302
---

# Dataset Card for Universal NER v1 in the Aya format - Portuguese subset

This dataset is a format conversion for the Portuguese data in the original Universal NER v1 into the Aya instruction format and it's released here under the same CC-BY-SA 4.0 license and conditions.

The dataset contains different subsets and their dev/test/train splits, depending on language. For more details, please refer to:

## Dataset Details

For the original Universal NER dataset v1 and more details, please check https://huggingface.co/datasets/universalner/universal_ner.

For details on the conversion to the Aya instructions format, please see the complete version: https://huggingface.co/datasets/universalner/uner_llm_instructions


## Citation

If you utilize this dataset version, feel free to cite/footnote the complete version at https://huggingface.co/datasets/universalner/uner_llm_instructions, but please also cite the *original dataset publication*.

**BibTeX:**

```
@preprint{mayhew2023universal,
  title={{Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark}}, 
  author={Stephen Mayhew and Terra Blevins and Shuheng Liu and Marek Šuppa and Hila Gonen and Joseph Marvin Imperial and Börje F. Karlsson and Peiqin Lin and Nikola Ljubešić and LJ Miranda and Barbara Plank and Arij Riabi and Yuval Pinter},
  year={2023},
  eprint={2311.09122},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
```