Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Size:
1M - 10M
ArXiv:
License:
File size: 11,637 Bytes
86083d6 1d6aeb3 86083d6 b5ea44f 86083d6 b5ea44f 86083d6 3bd79fe 86083d6 3bd79fe 86083d6 3bd79fe 86083d6 3bd79fe 86083d6 3bd79fe b5ea44f 86083d6 3bd79fe 86083d6 3bd79fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The WikiANN dataset for multilingual named entity recognition"""
import os
import datasets
_CITATION = """@inproceedings{pan-etal-2017-cross,
title = "Cross-lingual Name Tagging and Linking for 282 Languages",
author = "Pan, Xiaoman and
Zhang, Boliang and
May, Jonathan and
Nothman, Joel and
Knight, Kevin and
Ji, Heng",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P17-1178",
doi = "10.18653/v1/P17-1178",
pages = "1946--1958",
abstract = "The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating {``}silver-standard{''} annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.",
}"""
_DESCRIPTION = """WikiANN (sometimes called PAN-X) is a multilingual named entity recognition dataset consisting of Wikipedia articles annotated with LOC (location), PER (person), and ORG (organisation) tags in the IOB2 format. This version corresponds to the balanced train, dev, and test splits of Rahimi et al. (2019), which supports 176 of the 282 languages from the original WikiANN corpus."""
_DATA_URL = "https://s3.amazonaws.com/datasets.huggingface.co/wikiann/1.1.0/panx_dataset.zip"
_HOMEPAGE = "https://github.com/afshinrahimi/mmner"
_VERSION = "1.1.0"
_LANGS = [
"ace",
"af",
"als",
"am",
"an",
"ang",
"ar",
"arc",
"arz",
"as",
"ast",
"ay",
"az",
"ba",
"bar",
"bat-smg",
"be",
"be-x-old",
"bg",
"bh",
"bn",
"bo",
"br",
"bs",
"ca",
"cbk-zam",
"cdo",
"ce",
"ceb",
"ckb",
"co",
"crh",
"cs",
"csb",
"cv",
"cy",
"da",
"de",
"diq",
"dv",
"el",
"eml",
"en",
"eo",
"es",
"et",
"eu",
"ext",
"fa",
"fi",
"fiu-vro",
"fo",
"fr",
"frr",
"fur",
"fy",
"ga",
"gan",
"gd",
"gl",
"gn",
"gu",
"hak",
"he",
"hi",
"hr",
"hsb",
"hu",
"hy",
"ia",
"id",
"ig",
"ilo",
"io",
"is",
"it",
"ja",
"jbo",
"jv",
"ka",
"kk",
"km",
"kn",
"ko",
"ksh",
"ku",
"ky",
"la",
"lb",
"li",
"lij",
"lmo",
"ln",
"lt",
"lv",
"map-bms",
"mg",
"mhr",
"mi",
"min",
"mk",
"ml",
"mn",
"mr",
"ms",
"mt",
"mwl",
"my",
"mzn",
"nap",
"nds",
"ne",
"nl",
"nn",
"no",
"nov",
"oc",
"or",
"os",
"pa",
"pdc",
"pl",
"pms",
"pnb",
"ps",
"pt",
"qu",
"rm",
"ro",
"ru",
"rw",
"sa",
"sah",
"scn",
"sco",
"sd",
"sh",
"si",
"simple",
"sk",
"sl",
"so",
"sq",
"sr",
"su",
"sv",
"sw",
"szl",
"ta",
"te",
"tg",
"th",
"tk",
"tl",
"tr",
"tt",
"ug",
"uk",
"ur",
"uz",
"vec",
"vep",
"vi",
"vls",
"vo",
"wa",
"war",
"wuu",
"xmf",
"yi",
"yo",
"zea",
"zh",
"zh-classical",
"zh-min-nan",
"zh-yue",
]
class WikiannConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(WikiannConfig, self).__init__(version=datasets.Version(_VERSION, ""), **kwargs)
class Wikiann(datasets.GeneratorBasedBuilder):
"""WikiANN is a multilingual named entity recognition dataset consisting of Wikipedia articles annotated with LOC, PER, and ORG tags"""
VERSION = datasets.Version(_VERSION)
# use two-letter ISO 639-1 language codes as the name for each corpus
BUILDER_CONFIGS = [
WikiannConfig(name=lang, description=f"WikiANN NER examples in language {lang}") for lang in _LANGS
]
def _tags_to_spans(self, tags):
"""Convert tags to spans."""
spans = set()
span_start = 0
span_end = 0
active_conll_tag = None
for index, string_tag in enumerate(tags):
# Actual BIO tag.
bio_tag = string_tag[0]
assert bio_tag in ["B", "I", "O"], "Invalid Tag"
conll_tag = string_tag[2:]
if bio_tag == "O":
# The span has ended.
if active_conll_tag:
spans.add((active_conll_tag, (span_start, span_end)))
active_conll_tag = None
# We don't care about tags we are
# told to ignore, so we do nothing.
continue
elif bio_tag == "B":
# We are entering a new span; reset indices and active tag to new span.
if active_conll_tag:
spans.add((active_conll_tag, (span_start, span_end)))
active_conll_tag = conll_tag
span_start = index
span_end = index
elif bio_tag == "I" and conll_tag == active_conll_tag:
# We're inside a span.
span_end += 1
else:
# This is the case the bio label is an "I", but either:
# 1) the span hasn't started - i.e. an ill formed span.
# 2) We have IOB1 tagging scheme.
# We'll process the previous span if it exists, but also include this
# span. This is important, because otherwise, a model may get a perfect
# F1 score whilst still including false positive ill-formed spans.
if active_conll_tag:
spans.add((active_conll_tag, (span_start, span_end)))
active_conll_tag = conll_tag
span_start = index
span_end = index
# Last token might have been a part of a valid span.
if active_conll_tag:
spans.add((active_conll_tag, (span_start, span_end)))
# Return sorted list of spans
return sorted(list(spans), key=lambda x: x[1][0])
def _get_spans(self, tokens, tags):
"""Convert tags to textspans."""
spans = self._tags_to_spans(tags)
text_spans = [x[0] + ": " + " ".join([tokens[i] for i in range(x[1][0], x[1][1] + 1)]) for x in spans]
if not text_spans:
text_spans = ["None"]
return text_spans
def _info(self):
features = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC",
]
)
),
"langs": datasets.Sequence(datasets.Value("string")),
"spans": datasets.Sequence(datasets.Value("string")),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
wikiann_dl_dir = dl_manager.download_and_extract(_DATA_URL)
lang = self.config.name
lang_archive = os.path.join(wikiann_dl_dir, lang + ".tar.gz")
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": "dev", "files": dl_manager.iter_archive(lang_archive)},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": "test", "files": dl_manager.iter_archive(lang_archive)},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": "train", "files": dl_manager.iter_archive(lang_archive)},
),
]
def _generate_examples(self, filepath, files):
"""Reads line by line format of the NER dataset and generates examples.
Input Format:
en:rick B-PER
en:and O
en:morty B-PER
en:are O
en:cool O
en:. O
Output Format:
{
'tokens': ["rick", "and", "morty", "are", "cool", "."],
'ner_tags': ["B-PER", "O" , "B-PER", "O", "O", "O"],
'langs': ["en", "en", "en", "en", "en", "en"]
'spans': ["PER: rick", "PER: morty"]
}
Args:
filepath: Path to file with line by line NER format.
Returns:
Examples with the format listed above.
"""
guid_index = 1
for path, f in files:
if path == filepath:
tokens = []
ner_tags = []
langs = []
for line in f:
line = line.decode("utf-8")
if line == "" or line == "\n":
if tokens:
spans = self._get_spans(tokens, ner_tags)
yield guid_index, {"tokens": tokens, "ner_tags": ner_tags, "langs": langs, "spans": spans}
guid_index += 1
tokens = []
ner_tags = []
langs = []
else:
# wikiann data is tab separated
splits = line.split("\t")
# strip out en: prefix
langs.append(splits[0].split(":")[0])
tokens.append(":".join(splits[0].split(":")[1:]))
if len(splits) > 1:
ner_tags.append(splits[-1].replace("\n", ""))
else:
# examples have no label in test set
ner_tags.append("O")
break
|