File size: 15,211 Bytes
809ba53
20b5612
4509de4
501dddf
c3aa6fa
deb1f6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809ba53
 
 
 
 
 
 
c3aa6fa
809ba53
 
 
 
c3aa6fa
809ba53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00cccc8
809ba53
 
 
 
 
32f6427
 
 
809ba53
00cccc8
809ba53
 
 
 
c3aa6fa
809ba53
 
 
00cccc8
809ba53
 
 
00cccc8
809ba53
00cccc8
809ba53
 
 
32f6427
 
 
809ba53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f6427
 
 
809ba53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f6427
 
 
809ba53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00cccc8
809ba53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3aa6fa
809ba53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00cccc8
809ba53
00cccc8
809ba53
 
 
00cccc8
809ba53
c3aa6fa
 
 
 
 
 
809ba53
 
00cccc8
809ba53
c3aa6fa
 
 
 
 
 
809ba53
 
00cccc8
809ba53
 
 
00cccc8
809ba53
00cccc8
809ba53
 
 
00cccc8
809ba53
 
 
00cccc8
809ba53
 
 
00cccc8
809ba53
00cccc8
809ba53
 
 
00cccc8
809ba53
 
 
00cccc8
809ba53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
---
pretty_name: Reuters-21578 Text Categorization Collection
language:
- en
paperswithcode_id: reuters-21578
dataset_info:
- config_name: ModHayes
  features:
  - name: text
    dtype: string
  - name: text_type
    dtype: string
  - name: topics
    sequence: string
  - name: lewis_split
    dtype: string
  - name: cgis_split
    dtype: string
  - name: old_id
    dtype: string
  - name: new_id
    dtype: string
  - name: places
    sequence: string
  - name: people
    sequence: string
  - name: orgs
    sequence: string
  - name: exchanges
    sequence: string
  - name: date
    dtype: string
  - name: title
    dtype: string
  splits:
  - name: test
    num_bytes: 948316
    num_examples: 722
  - name: train
    num_bytes: 19071322
    num_examples: 20856
  download_size: 8150596
  dataset_size: 20019638
- config_name: ModLewis
  features:
  - name: text
    dtype: string
  - name: text_type
    dtype: string
  - name: topics
    sequence: string
  - name: lewis_split
    dtype: string
  - name: cgis_split
    dtype: string
  - name: old_id
    dtype: string
  - name: new_id
    dtype: string
  - name: places
    sequence: string
  - name: people
    sequence: string
  - name: orgs
    sequence: string
  - name: exchanges
    sequence: string
  - name: date
    dtype: string
  - name: title
    dtype: string
  splits:
  - name: test
    num_bytes: 5400578
    num_examples: 6188
  - name: train
    num_bytes: 12994735
    num_examples: 13625
  - name: unused
    num_bytes: 948316
    num_examples: 722
  download_size: 8150596
  dataset_size: 19343629
- config_name: ModApte
  features:
  - name: text
    dtype: string
  - name: text_type
    dtype: string
  - name: topics
    sequence: string
  - name: lewis_split
    dtype: string
  - name: cgis_split
    dtype: string
  - name: old_id
    dtype: string
  - name: new_id
    dtype: string
  - name: places
    sequence: string
  - name: people
    sequence: string
  - name: orgs
    sequence: string
  - name: exchanges
    sequence: string
  - name: date
    dtype: string
  - name: title
    dtype: string
  splits:
  - name: test
    num_bytes: 2971725
    num_examples: 3299
  - name: train
    num_bytes: 9161251
    num_examples: 9603
  - name: unused
    num_bytes: 948316
    num_examples: 722
  download_size: 8150596
  dataset_size: 13081292
---

# Dataset Card for "reuters21578"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html](https://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 24.45 MB
- **Size of the generated dataset:** 52.22 MB
- **Total amount of disk used:** 76.67 MB

### Dataset Summary

The Reuters-21578 dataset  is one of the most widely used data collections for text
categorization research. It is collected from the Reuters financial newswire service in 1987.

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Dataset Structure

### Data Instances

#### ModApte

- **Size of downloaded dataset files:** 8.15 MB
- **Size of the generated dataset:** 13.05 MB
- **Total amount of disk used:** 21.21 MB

An example of 'train' looks as follows.
```
This example was too long and was cropped:

{
    "cgis_split": "\"TRAINING-SET\"",
    "date": "19-MAR-1987 06:17:22.36",
    "exchanges": [],
    "lewis_split": "\"TRAIN\"",
    "new_id": "\"7001\"",
    "old_id": "\"11914\"",
    "orgs": [],
    "people": [],
    "places": ["australia"],
    "text": "\"Media group John Fairfax Ltd <FFXA.S>\\nsaid that its flat first half net profit partly reflected the\\nimpact of changes in t...",
    "title": "FAIRFAX SAYS HIGHER TAX HITS FIRST HALF EARNINGS",
    "topics": ["earn"]
}
```

#### ModHayes

- **Size of downloaded dataset files:** 8.15 MB
- **Size of the generated dataset:** 19.79 MB
- **Total amount of disk used:** 27.93 MB

An example of 'train' looks as follows.
```
This example was too long and was cropped:

{
    "cgis_split": "\"TRAINING-SET\"",
    "date": "19-OCT-1987 23:49:31.45",
    "exchanges": [],
    "lewis_split": "\"TEST\"",
    "new_id": "\"20001\"",
    "old_id": "\"20596\"",
    "orgs": [],
    "people": [],
    "places": ["japan", "usa"],
    "text": "\"If the dollar goes the way of Wall Street,\\nJapanese will finally move out of dollar investments in a\\nserious way, Japan inves...",
    "title": "IF DOLLAR FOLLOWS WALL STREET JAPANESE WILL DIVEST",
    "topics": ["money-fx"]
}
```

#### ModLewis

- **Size of downloaded dataset files:** 8.15 MB
- **Size of the generated dataset:** 19.38 MB
- **Total amount of disk used:** 27.54 MB

An example of 'train' looks as follows.
```
This example was too long and was cropped:

{
    "cgis_split": "\"TRAINING-SET\"",
    "date": "19-MAR-1987 06:17:22.36",
    "exchanges": [],
    "lewis_split": "\"TRAIN\"",
    "new_id": "\"7001\"",
    "old_id": "\"11914\"",
    "orgs": [],
    "people": [],
    "places": ["australia"],
    "text": "\"Media group John Fairfax Ltd <FFXA.S>\\nsaid that its flat first half net profit partly reflected the\\nimpact of changes in t...",
    "title": "FAIRFAX SAYS HIGHER TAX HITS FIRST HALF EARNINGS",
    "topics": ["earn"]
}
```

### Data Fields

The data fields are the same among all splits.

#### ModApte
- `text`: a `string` feature.
- `topics`: a `list` of `string` features.
- `lewis_split`: a `string` feature.
- `cgis_split`: a `string` feature.
- `old_id`: a `string` feature.
- `new_id`: a `string` feature.
- `places`: a `list` of `string` features.
- `people`: a `list` of `string` features.
- `orgs`: a `list` of `string` features.
- `exchanges`: a `list` of `string` features.
- `date`: a `string` feature.
- `title`: a `string` feature.

#### ModHayes
- `text`: a `string` feature.
- `topics`: a `list` of `string` features.
- `lewis_split`: a `string` feature.
- `cgis_split`: a `string` feature.
- `old_id`: a `string` feature.
- `new_id`: a `string` feature.
- `places`: a `list` of `string` features.
- `people`: a `list` of `string` features.
- `orgs`: a `list` of `string` features.
- `exchanges`: a `list` of `string` features.
- `date`: a `string` feature.
- `title`: a `string` feature.

#### ModLewis
- `text`: a `string` feature.
- `topics`: a `list` of `string` features.
- `lewis_split`: a `string` feature.
- `cgis_split`: a `string` feature.
- `old_id`: a `string` feature.
- `new_id`: a `string` feature.
- `places`: a `list` of `string` features.
- `people`: a `list` of `string` features.
- `orgs`: a `list` of `string` features.
- `exchanges`: a `list` of `string` features.
- `date`: a `string` feature.
- `title`: a `string` feature.

### Data Splits

#### ModApte

|       |train|unused|test|
|-------|----:|-----:|---:|
|ModApte| 8762|   720|3009|

#### ModHayes

|        |train|test|
|--------|----:|---:|
|ModHayes|18323| 720|

#### ModLewis

|        |train|unused|test|
|--------|----:|-----:|---:|
|ModLewis|12449|   720|5458|

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Citation Information

```
@article{APTE94,
author = {Chidanand Apt{'{e}} and Fred Damerau and Sholom M. Weiss},
title = {Automated Learning of Decision Rules for Text Categorization},
journal = {ACM Transactions on Information Systems},
year = {1994},
note = {To appear.}
}

@inproceedings{APTE94b,
author = {Chidanand Apt{'{e}} and Fred Damerau and Sholom M. Weiss},
title = {Toward Language Independent Automated Learning of Text Categorization Models},
booktitle = {sigir94},
year = {1994},
note = {To appear.}
}

@inproceedings{HAYES8},
author = {Philip J. Hayes and Peggy M. Anderson and Irene B. Nirenburg and
Linda M. Schmandt},
title = {{TCS}: A Shell for Content-Based Text Categorization},
booktitle = {IEEE Conference on Artificial Intelligence Applications},
year = {1990}
}

@inproceedings{HAYES90b,
author = {Philip J. Hayes and Steven P. Weinstein},
title = {{CONSTRUE/TIS:} A System for Content-Based Indexing of a
Database of News Stories},
booktitle = {Second Annual Conference on Innovative Applications of
Artificial Intelligence},
year = {1990}
}

@incollection{HAYES92 ,
author = {Philip J. Hayes},
title = {Intelligent High-Volume Text Processing using Shallow,
Domain-Specific Techniques},
booktitle = {Text-Based Intelligent Systems},
publisher = {Lawrence Erlbaum},
address =  {Hillsdale, NJ},
year = {1992},
editor = {Paul S. Jacobs}
}

@inproceedings{LEWIS91c ,
author = {David D. Lewis},
title = {Evaluating Text Categorization},
booktitle = {Proceedings of Speech and Natural Language Workshop},
year = {1991},
month = {feb},
organization = {Defense Advanced Research Projects Agency},
publisher = {Morgan Kaufmann},
pages = {312--318}

}

@phdthesis{LEWIS91d,
author = {David Dolan Lewis},
title = {Representation and Learning in Information Retrieval},
school = {Computer Science Dept.; Univ. of Massachusetts; Amherst, MA 01003},
year = 1992},
note = {Technical Report 91--93.}
}

@inproceedings{LEWIS91e,
author = {David D. Lewis},
title = {Data Extraction as Text Categorization: An Experiment with
the {MUC-3} Corpus},
booktitle = {Proceedings of the Third Message Understanding Evaluation
and Conference},
year = {1991},
month = {may},
organization = {Defense Advanced Research Projects Agency},
publisher = {Morgan Kaufmann},
address = {Los Altos, CA}

}

@inproceedings{LEWIS92b,
author = {David D. Lewis},
title = {An Evaluation of Phrasal and Clustered Representations on a Text
Categorization Task},
booktitle = {Fifteenth Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval},
year = {1992},
pages = {37--50}
}

@inproceedings{LEWIS92d ,
author = {David D. Lewis and Richard M. Tong},
title = {Text Filtering in {MUC-3} and {MUC-4}},
booktitle = {Proceedings of the Fourth Message Understanding Conference ({MUC-4})},
year = {1992},
month = {jun},
organization = {Defense Advanced Research Projects Agency},
publisher = {Morgan Kaufmann},
address = {Los Altos, CA}
}

@inproceedings{LEWIS92e,
author = {David D. Lewis},
title = {Feature Selection and Feature Extraction for Text Categorization},
booktitle = {Proceedings of Speech and Natural Language Workshop},
year = {1992},
month = {feb} ,
organization = {Defense Advanced Research Projects Agency},
publisher = {Morgan Kaufmann},
pages = {212--217}
}

@inproceedings{LEWIS94b,
author = {David D. Lewis and Marc Ringuette},
title = {A Comparison of Two Learning Algorithms for Text Categorization},
booktitle = {Symposium on Document Analysis and Information Retrieval},
year = {1994},
organization = {ISRI; Univ. of Nevada, Las Vegas},
address = {Las Vegas, NV},
month = {apr},
pages = {81--93}
}

@article{LEWIS94d,
author = {David D. Lewis and Philip J. Hayes},
title = {Guest Editorial},
journal = {ACM Transactions on Information Systems},
year = {1994},
volume  = {12},
number  = {3},
pages = {231},
month = {jul}
}

@article{SPARCKJONES76,
author = {K. {Sparck Jones} and  C. J. {van Rijsbergen}},
title =  {Information Retrieval Test Collections},
journal = {Journal of Documentation},
year = {1976},
volume = {32},
number = {1},
pages = {59--75}
}

@book{WEISS91,
author = {Sholom M. Weiss and Casimir A. Kulikowski},
title = {Computer Systems That Learn},
publisher = {Morgan Kaufmann},
year = {1991},
address = {San Mateo, CA}
}

```


### Contributions

Thanks to [@jplu](https://github.com/jplu), [@jbragg](https://github.com/jbragg), [@thomwolf](https://github.com/thomwolf), [@mariamabarham](https://github.com/mariamabarham), [@lhoestq](https://github.com/lhoestq) for adding this dataset.