Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 7,372 Bytes
0316ec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47c9448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0316ec0
 
 
 
 
 
 
 
 
 
 
 
 
 
47c9448
 
0316ec0
 
47c9448
 
 
0316ec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47c9448
0316ec0
 
 
 
47c9448
0316ec0
 
 
47c9448
0316ec0
 
47c9448
0316ec0
47c9448
 
 
 
 
 
 
 
0316ec0
47c9448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""TODO(drop): Add a description here."""


import json
import os

import datasets


# TODO(drop): BibTeX citation
_CITATION = """\
@inproceedings{Dua2019DROP,
  author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},
  title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs},
  booktitle={Proc. of NAACL},
  year={2019}
}
"""

# TODO(drop):
_DESCRIPTION = """\
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs.
. DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a
question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or
 sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was
 necessary for prior datasets.
"""
_URl = "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip"


class AnswerParsingError(Exception):
    pass


class DropDateObject:
    """
    Custom parser for date answers in DROP.
    A date answer is a dict <date> with at least one of day|month|year.

    Example: date == {
        'day': '9',
        'month': 'March',
        'year': '2021'
    }

    This dict is parsed and flattend to '{day} {month} {year}', not including
    blank values.

    Example: str(DropDateObject(date)) == '9 March 2021'
    """

    def __init__(self, dict_date):
        self.year = dict_date.get("year", "")
        self.month = dict_date.get("month", "")
        self.day = dict_date.get("day", "")

    def __iter__(self):
        yield from [self.day, self.month, self.year]

    def __bool__(self):
        return any(self)

    def __repr__(self):
        return " ".join(self).strip()


class Drop(datasets.GeneratorBasedBuilder):
    """TODO(drop): Short description of my dataset."""

    # TODO(drop): Set up version.
    VERSION = datasets.Version("0.1.0")

    def _info(self):
        # TODO(drop): Specifies the datasets.DatasetInfo object
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # datasets.features.FeatureConnectors
            features=datasets.Features(
                {
                    "section_id": datasets.Value("string"),
                    "query_id": datasets.Value("string"),
                    "passage": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "answers_spans": datasets.features.Sequence(
                        {"spans": datasets.Value("string"), "types": datasets.Value("string")}
                    )
                    # These are the features of your dataset like images, labels ...
                }
            ),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="https://allennlp.org/drop",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO(drop): Downloads the data and defines the splits
        # dl_manager is a datasets.download.DownloadManager that can be used to
        # download and extract URLs
        dl_dir = dl_manager.download_and_extract(_URl)
        data_dir = os.path.join(dl_dir, "drop_dataset")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_train.json"), "split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_dev.json"), "split": "validation"},
            ),
        ]

    def _generate_examples(self, filepath, split):
        """Yields examples."""
        # TODO(drop): Yields (key, example) tuples from the dataset
        with open(filepath, mode="r", encoding="utf-8") as f:
            data = json.load(f)
            for i, (section_id, section) in enumerate(data.items()):
                for j, qa in enumerate(section["qa_pairs"]):

                    example = {
                        "section_id": section_id,
                        "query_id": qa["query_id"],
                        "passage": section["passage"],
                        "question": qa["question"],
                    }

                    if split == "train":
                        answers = [qa["answer"]]
                    else:
                        answers = qa["validated_answers"]

                    try:
                        example["answers_spans"] = self.build_answers(answers)
                        yield example["query_id"], example
                    except AnswerParsingError:
                        # This is expected for 9 examples of train
                        # and 1 of validation.
                        continue

    @staticmethod
    def _raise(message):
        """
        Raise a custom AnswerParsingError, to be sure to only catch our own
        errors. Messages are irrelavant for this script, but are written to
        ease understanding the code.
        """
        raise AnswerParsingError(message)

    def build_answers(self, answers):

        returned_answers = {
            "spans": list(),
            "types": list(),
        }
        for answer in answers:
            date = DropDateObject(answer["date"])

            if answer["number"] != "":
                # sanity checks
                if date:
                    self._raise("This answer is both number and date!")
                if len(answer["spans"]):
                    self._raise("This answer is both number and text!")

                returned_answers["spans"].append(answer["number"])
                returned_answers["types"].append("number")

            elif date:
                # sanity check
                if len(answer["spans"]):
                    self._raise("This answer is both date and text!")

                returned_answers["spans"].append(str(date))
                returned_answers["types"].append("date")

            # won't triger if len(answer['spans']) == 0
            for span in answer["spans"]:
                # sanity checks
                if answer["number"] != "":
                    self._raise("This answer is both text and number!")
                if date:
                    self._raise("This answer is both text and date!")

                returned_answers["spans"].append(span)
                returned_answers["types"].append("span")

        # sanity check
        _len = len(returned_answers["spans"])
        if not _len:
            self._raise("Empty answer.")
        if any(len(l) != _len for _, l in returned_answers.items()):
            self._raise("Something went wrong while parsing answer values/types")

        return returned_answers