Datasets:
File size: 7,372 Bytes
0316ec0 47c9448 0316ec0 47c9448 0316ec0 47c9448 0316ec0 47c9448 0316ec0 47c9448 0316ec0 47c9448 0316ec0 47c9448 0316ec0 47c9448 0316ec0 47c9448 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
"""TODO(drop): Add a description here."""
import json
import os
import datasets
# TODO(drop): BibTeX citation
_CITATION = """\
@inproceedings{Dua2019DROP,
author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},
title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs},
booktitle={Proc. of NAACL},
year={2019}
}
"""
# TODO(drop):
_DESCRIPTION = """\
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs.
. DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a
question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or
sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was
necessary for prior datasets.
"""
_URl = "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip"
class AnswerParsingError(Exception):
pass
class DropDateObject:
"""
Custom parser for date answers in DROP.
A date answer is a dict <date> with at least one of day|month|year.
Example: date == {
'day': '9',
'month': 'March',
'year': '2021'
}
This dict is parsed and flattend to '{day} {month} {year}', not including
blank values.
Example: str(DropDateObject(date)) == '9 March 2021'
"""
def __init__(self, dict_date):
self.year = dict_date.get("year", "")
self.month = dict_date.get("month", "")
self.day = dict_date.get("day", "")
def __iter__(self):
yield from [self.day, self.month, self.year]
def __bool__(self):
return any(self)
def __repr__(self):
return " ".join(self).strip()
class Drop(datasets.GeneratorBasedBuilder):
"""TODO(drop): Short description of my dataset."""
# TODO(drop): Set up version.
VERSION = datasets.Version("0.1.0")
def _info(self):
# TODO(drop): Specifies the datasets.DatasetInfo object
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
"section_id": datasets.Value("string"),
"query_id": datasets.Value("string"),
"passage": datasets.Value("string"),
"question": datasets.Value("string"),
"answers_spans": datasets.features.Sequence(
{"spans": datasets.Value("string"), "types": datasets.Value("string")}
)
# These are the features of your dataset like images, labels ...
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://allennlp.org/drop",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO(drop): Downloads the data and defines the splits
# dl_manager is a datasets.download.DownloadManager that can be used to
# download and extract URLs
dl_dir = dl_manager.download_and_extract(_URl)
data_dir = os.path.join(dl_dir, "drop_dataset")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_train.json"), "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_dev.json"), "split": "validation"},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
# TODO(drop): Yields (key, example) tuples from the dataset
with open(filepath, mode="r", encoding="utf-8") as f:
data = json.load(f)
for i, (section_id, section) in enumerate(data.items()):
for j, qa in enumerate(section["qa_pairs"]):
example = {
"section_id": section_id,
"query_id": qa["query_id"],
"passage": section["passage"],
"question": qa["question"],
}
if split == "train":
answers = [qa["answer"]]
else:
answers = qa["validated_answers"]
try:
example["answers_spans"] = self.build_answers(answers)
yield example["query_id"], example
except AnswerParsingError:
# This is expected for 9 examples of train
# and 1 of validation.
continue
@staticmethod
def _raise(message):
"""
Raise a custom AnswerParsingError, to be sure to only catch our own
errors. Messages are irrelavant for this script, but are written to
ease understanding the code.
"""
raise AnswerParsingError(message)
def build_answers(self, answers):
returned_answers = {
"spans": list(),
"types": list(),
}
for answer in answers:
date = DropDateObject(answer["date"])
if answer["number"] != "":
# sanity checks
if date:
self._raise("This answer is both number and date!")
if len(answer["spans"]):
self._raise("This answer is both number and text!")
returned_answers["spans"].append(answer["number"])
returned_answers["types"].append("number")
elif date:
# sanity check
if len(answer["spans"]):
self._raise("This answer is both date and text!")
returned_answers["spans"].append(str(date))
returned_answers["types"].append("date")
# won't triger if len(answer['spans']) == 0
for span in answer["spans"]:
# sanity checks
if answer["number"] != "":
self._raise("This answer is both text and number!")
if date:
self._raise("This answer is both text and date!")
returned_answers["spans"].append(span)
returned_answers["types"].append("span")
# sanity check
_len = len(returned_answers["spans"])
if not _len:
self._raise("Empty answer.")
if any(len(l) != _len for _, l in returned_answers.items()):
self._raise("Something went wrong while parsing answer values/types")
return returned_answers
|