Datasets:
Update files from the datasets library (from 1.5.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.5.0
- dataset_infos.json +1 -1
- drop.py +122 -15
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"default": {"description": "DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs.\n. DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a
|
|
|
1 |
+
{"default": {"description": "DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs.\n. DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a\nquestion, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or\n sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was\n necessary for prior datasets.\n", "citation": "@inproceedings{Dua2019DROP,\n author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner},\n title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs},\n booktitle={Proc. of NAACL},\n year={2019}\n}\n", "homepage": "https://allennlp.org/drop", "license": "", "features": {"section_id": {"dtype": "string", "id": null, "_type": "Value"}, "query_id": {"dtype": "string", "id": null, "_type": "Value"}, "passage": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers_spans": {"feature": {"spans": {"dtype": "string", "id": null, "_type": "Value"}, "types": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "drop", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 105572762, "num_examples": 77400, "dataset_name": "drop"}, "validation": {"name": "validation", "num_bytes": 11737787, "num_examples": 9535, "dataset_name": "drop"}}, "download_checksums": {"https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip": {"num_bytes": 8308692, "checksum": "39d2278a29fd729de301b111a45f434c24834f40df8f4ff116d864589e3249d6"}}, "download_size": 8308692, "post_processing_size": null, "dataset_size": 117310549, "size_in_bytes": 125619241}}
|
drop.py
CHANGED
@@ -29,6 +29,42 @@ question, perhaps to multiple input positions, and perform discrete operations o
|
|
29 |
_URl = "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip"
|
30 |
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
class Drop(datasets.GeneratorBasedBuilder):
|
33 |
"""TODO(drop): Short description of my dataset."""
|
34 |
|
@@ -43,9 +79,13 @@ class Drop(datasets.GeneratorBasedBuilder):
|
|
43 |
# datasets.features.FeatureConnectors
|
44 |
features=datasets.Features(
|
45 |
{
|
|
|
|
|
46 |
"passage": datasets.Value("string"),
|
47 |
"question": datasets.Value("string"),
|
48 |
-
"answers_spans": datasets.features.Sequence(
|
|
|
|
|
49 |
# These are the features of your dataset like images, labels ...
|
50 |
}
|
51 |
),
|
@@ -69,28 +109,95 @@ class Drop(datasets.GeneratorBasedBuilder):
|
|
69 |
datasets.SplitGenerator(
|
70 |
name=datasets.Split.TRAIN,
|
71 |
# These kwargs will be passed to _generate_examples
|
72 |
-
gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_train.json")},
|
73 |
),
|
74 |
datasets.SplitGenerator(
|
75 |
name=datasets.Split.VALIDATION,
|
76 |
# These kwargs will be passed to _generate_examples
|
77 |
-
gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_dev.json")},
|
78 |
),
|
79 |
]
|
80 |
|
81 |
-
def _generate_examples(self, filepath):
|
82 |
"""Yields examples."""
|
83 |
# TODO(drop): Yields (key, example) tuples from the dataset
|
84 |
-
with open(filepath, encoding="utf-8") as f:
|
85 |
data = json.load(f)
|
86 |
-
for i,
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
"
|
94 |
-
"question": question,
|
95 |
-
"answers_spans": {"spans": answers},
|
96 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
_URl = "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip"
|
30 |
|
31 |
|
32 |
+
class AnswerParsingError(Exception):
|
33 |
+
pass
|
34 |
+
|
35 |
+
|
36 |
+
class DropDateObject:
|
37 |
+
"""
|
38 |
+
Custom parser for date answers in DROP.
|
39 |
+
A date answer is a dict <date> with at least one of day|month|year.
|
40 |
+
|
41 |
+
Example: date == {
|
42 |
+
'day': '9',
|
43 |
+
'month': 'March',
|
44 |
+
'year': '2021'
|
45 |
+
}
|
46 |
+
|
47 |
+
This dict is parsed and flattend to '{day} {month} {year}', not including
|
48 |
+
blank values.
|
49 |
+
|
50 |
+
Example: str(DropDateObject(date)) == '9 March 2021'
|
51 |
+
"""
|
52 |
+
|
53 |
+
def __init__(self, dict_date):
|
54 |
+
self.year = dict_date.get("year", "")
|
55 |
+
self.month = dict_date.get("month", "")
|
56 |
+
self.day = dict_date.get("day", "")
|
57 |
+
|
58 |
+
def __iter__(self):
|
59 |
+
yield from [self.day, self.month, self.year]
|
60 |
+
|
61 |
+
def __bool__(self):
|
62 |
+
return any(self)
|
63 |
+
|
64 |
+
def __repr__(self):
|
65 |
+
return " ".join(self).strip()
|
66 |
+
|
67 |
+
|
68 |
class Drop(datasets.GeneratorBasedBuilder):
|
69 |
"""TODO(drop): Short description of my dataset."""
|
70 |
|
|
|
79 |
# datasets.features.FeatureConnectors
|
80 |
features=datasets.Features(
|
81 |
{
|
82 |
+
"section_id": datasets.Value("string"),
|
83 |
+
"query_id": datasets.Value("string"),
|
84 |
"passage": datasets.Value("string"),
|
85 |
"question": datasets.Value("string"),
|
86 |
+
"answers_spans": datasets.features.Sequence(
|
87 |
+
{"spans": datasets.Value("string"), "types": datasets.Value("string")}
|
88 |
+
)
|
89 |
# These are the features of your dataset like images, labels ...
|
90 |
}
|
91 |
),
|
|
|
109 |
datasets.SplitGenerator(
|
110 |
name=datasets.Split.TRAIN,
|
111 |
# These kwargs will be passed to _generate_examples
|
112 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_train.json"), "split": "train"},
|
113 |
),
|
114 |
datasets.SplitGenerator(
|
115 |
name=datasets.Split.VALIDATION,
|
116 |
# These kwargs will be passed to _generate_examples
|
117 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_dev.json"), "split": "validation"},
|
118 |
),
|
119 |
]
|
120 |
|
121 |
+
def _generate_examples(self, filepath, split):
|
122 |
"""Yields examples."""
|
123 |
# TODO(drop): Yields (key, example) tuples from the dataset
|
124 |
+
with open(filepath, mode="r", encoding="utf-8") as f:
|
125 |
data = json.load(f)
|
126 |
+
for i, (section_id, section) in enumerate(data.items()):
|
127 |
+
for j, qa in enumerate(section["qa_pairs"]):
|
128 |
+
|
129 |
+
example = {
|
130 |
+
"section_id": section_id,
|
131 |
+
"query_id": qa["query_id"],
|
132 |
+
"passage": section["passage"],
|
133 |
+
"question": qa["question"],
|
|
|
|
|
134 |
}
|
135 |
+
|
136 |
+
if split == "train":
|
137 |
+
answers = [qa["answer"]]
|
138 |
+
else:
|
139 |
+
answers = qa["validated_answers"]
|
140 |
+
|
141 |
+
try:
|
142 |
+
example["answers_spans"] = self.build_answers(answers)
|
143 |
+
yield example["query_id"], example
|
144 |
+
except AnswerParsingError:
|
145 |
+
# This is expected for 9 examples of train
|
146 |
+
# and 1 of validation.
|
147 |
+
continue
|
148 |
+
|
149 |
+
@staticmethod
|
150 |
+
def _raise(message):
|
151 |
+
"""
|
152 |
+
Raise a custom AnswerParsingError, to be sure to only catch our own
|
153 |
+
errors. Messages are irrelavant for this script, but are written to
|
154 |
+
ease understanding the code.
|
155 |
+
"""
|
156 |
+
raise AnswerParsingError(message)
|
157 |
+
|
158 |
+
def build_answers(self, answers):
|
159 |
+
|
160 |
+
returned_answers = {
|
161 |
+
"spans": list(),
|
162 |
+
"types": list(),
|
163 |
+
}
|
164 |
+
for answer in answers:
|
165 |
+
date = DropDateObject(answer["date"])
|
166 |
+
|
167 |
+
if answer["number"] != "":
|
168 |
+
# sanity checks
|
169 |
+
if date:
|
170 |
+
self._raise("This answer is both number and date!")
|
171 |
+
if len(answer["spans"]):
|
172 |
+
self._raise("This answer is both number and text!")
|
173 |
+
|
174 |
+
returned_answers["spans"].append(answer["number"])
|
175 |
+
returned_answers["types"].append("number")
|
176 |
+
|
177 |
+
elif date:
|
178 |
+
# sanity check
|
179 |
+
if len(answer["spans"]):
|
180 |
+
self._raise("This answer is both date and text!")
|
181 |
+
|
182 |
+
returned_answers["spans"].append(str(date))
|
183 |
+
returned_answers["types"].append("date")
|
184 |
+
|
185 |
+
# won't triger if len(answer['spans']) == 0
|
186 |
+
for span in answer["spans"]:
|
187 |
+
# sanity checks
|
188 |
+
if answer["number"] != "":
|
189 |
+
self._raise("This answer is both text and number!")
|
190 |
+
if date:
|
191 |
+
self._raise("This answer is both text and date!")
|
192 |
+
|
193 |
+
returned_answers["spans"].append(span)
|
194 |
+
returned_answers["types"].append("span")
|
195 |
+
|
196 |
+
# sanity check
|
197 |
+
_len = len(returned_answers["spans"])
|
198 |
+
if not _len:
|
199 |
+
self._raise("Empty answer.")
|
200 |
+
if any(len(l) != _len for _, l in returned_answers.items()):
|
201 |
+
self._raise("Something went wrong while parsing answer values/types")
|
202 |
+
|
203 |
+
return returned_answers
|