File size: 3,582 Bytes
603a583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9cf783
 
 
cca0643
c9cf783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a57dd65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b3b2c3
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
dataset_info:
  features:
  - name: dataset
    dtype: string
  - name: condition
    dtype: string
  - name: trial
    dtype: string
  - name: n_objects
    dtype: int64
  - name: oddity_index
    dtype: int64
  - name: images
    sequence: image
  - name: n_subjects
    dtype: int64
  - name: human_avg
    dtype: float64
  - name: human_sem
    dtype: float64
  - name: human_std
    dtype: float64
  - name: RT_avg
    dtype: float64
  - name: RT_sem
    dtype: float64
  - name: RT_std
    dtype: float64
  - name: DINOv2G_avg
    dtype: float64
  - name: DINOv2G_std
    dtype: float64
  - name: DINOv2G_sem
    dtype: float64
  splits:
  - name: train
    num_bytes: 384413356.563
    num_examples: 2019
  download_size: 382548893
  dataset_size: 384413356.563
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

## MOCHI: Multiview Object Consistency in Humans and Image models

We introduce a benchmark to evaluate the alignment between humans and image models on 3D shape understanding: **M**ultiview **O**bject **C**onsistency in **H**umans and **I**mage models (**MOCHI**)

To download dataset from huggingface, install relevant huggingface libraries

```
pip install datasets huggingface_hub
```
and download MOCHI 

```python
from datasets import load_dataset

# download huggingface dataset 
benchmark = load_dataset("tzler/MOCHI")['train']

# there are 2019 trials let's pick one 
i_trial = benchmark[1879]
```

Here, `i_trial` is a dictionary with trial-related data including human (`human` and `RT`) and model (`DINOv2G`) performance measures: 

```
{'dataset': 'shapegen',
 'condition': 'abstract2',
 'trial': 'shapegen2527',
 'n_objects': 3,
 'oddity_index': 2,
 'images': [<PIL.PngImagePlugin.PngImageFile image mode=RGB size=1000x1000>,
  <PIL.PngImagePlugin.PngImageFile image mode=RGB size=1000x1000>,
  <PIL.PngImagePlugin.PngImageFile image mode=RGB size=1000x1000>],
 'n_subjects': 15,
 'human_avg': 1.0,
 'human_sem': 0.0,
 'human_std': 0.0,
 'RT_avg': 4324.733333333334,
 'RT_sem': 544.4202024405384,
 'RT_std': 2108.530377391076,
 'DINOv2G_avg': 1.0,
 'DINOv2G_std': 0.0,
 'DINOv2G_sem': 0.0}```

```

as well as this trial's images: 

```python
plt.figure(figsize=[15,4])
for i_plot in range(len(i_trial['images'])):
  plt.subplot(1,len(i_trial['images']),i_plot+1)
  plt.imshow(i_trial['images'][i_plot])
  if i_plot == i_trial['oddity_index']: plt.title('odd-one-out')
  plt.axis('off')
plt.show()
```
<img src="example_trial.png" alt="example trial"/>

The complete results on this benchmark, including all of the human and model (e.g., DINOv2, CLIP, and MAE at multiple sizes), can be downloaded from the github repo: 

```
git clone https://github.com/tzler/MOCHI.git
```
And then imported with a few lines of code:

```python
import pandas 
# load data the github repo we just cloned  
df = pandas.read_csv('MOCHI/assets/benchmark.csv')
# extract trial info with the index from huggingface repo above
df.loc[i_trial_index]['trial']
```
This returns the trial, `shapegen2527`, which is the same as the huggingface dataset for this index. 


```
@misc{bonnen2024evaluatingmultiviewobjectconsistency,
      title={Evaluating Multiview Object Consistency in Humans and Image Models}, 
      author={Tyler Bonnen and Stephanie Fu and Yutong Bai and Thomas O'Connell and Yoni Friedman and Nancy Kanwisher and Joshua B. Tenenbaum and Alexei A. Efros},
      year={2024},
      eprint={2409.05862},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2409.05862}, 
}
```