Update README.md
Browse files
README.md
CHANGED
@@ -45,3 +45,61 @@ configs:
|
|
45 |
- split: train
|
46 |
path: data/train-*
|
47 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
- split: train
|
46 |
path: data/train-*
|
47 |
---
|
48 |
+
|
49 |
+
## MOCHI: Multiview Object Consistency in Humans and Image models
|
50 |
+
|
51 |
+
We introduce **MOCHI** (Multiview Obect Consistency in Humans and Image models), a benchmark to evaluate the alignment between humans and image models on 3D shape understanding.
|
52 |
+
|
53 |
+
To download dataset from huggingface, install relevant huggingface libraries
|
54 |
+
|
55 |
+
```
|
56 |
+
pip install datasets huggingface_hub
|
57 |
+
```
|
58 |
+
and download MOCHI
|
59 |
+
|
60 |
+
```python
|
61 |
+
from datasets import load_dataset
|
62 |
+
|
63 |
+
# download huggingface dataset
|
64 |
+
benchmark = load_dataset("tzler/MOCHI")['train']
|
65 |
+
|
66 |
+
# there are 2019 trials let's pick one
|
67 |
+
i_trial = benchmark[1879]
|
68 |
+
```
|
69 |
+
|
70 |
+
Here, `i_trial` is a dictionary with trial-related data including human (`human` and `RT`) and model (`DINOv2G`) performance measures:
|
71 |
+
|
72 |
+
```
|
73 |
+
{'dataset': 'shapegen',
|
74 |
+
'condition': 'abstract2',
|
75 |
+
'trial': 'shapegen2527',
|
76 |
+
'n_objects': 3,
|
77 |
+
'oddity_index': 2,
|
78 |
+
'images': [<PIL.PngImagePlugin.PngImageFile image mode=RGB size=1000x1000>,
|
79 |
+
<PIL.PngImagePlugin.PngImageFile image mode=RGB size=1000x1000>,
|
80 |
+
<PIL.PngImagePlugin.PngImageFile image mode=RGB size=1000x1000>],
|
81 |
+
'n_subjects': 15,
|
82 |
+
'human_avg': 1.0,
|
83 |
+
'human_sem': 0.0,
|
84 |
+
'human_std': 0.0,
|
85 |
+
'RT_avg': 4324.733333333334,
|
86 |
+
'RT_sem': 544.4202024405384,
|
87 |
+
'RT_std': 2108.530377391076,
|
88 |
+
'DINOv2G_avg': 1.0,
|
89 |
+
'DINOv2G_std': 0.0,
|
90 |
+
'DINOv2G_sem': 0.0}```
|
91 |
+
|
92 |
+
```
|
93 |
+
|
94 |
+
as well as this trial's images:
|
95 |
+
|
96 |
+
```python
|
97 |
+
plt.figure(figsize=[15,4])
|
98 |
+
for i_plot in range(len(i_trial['images'])):
|
99 |
+
plt.subplot(1,len(i_trial['images']),i_plot+1)
|
100 |
+
plt.imshow(i_trial['images'][i_plot])
|
101 |
+
if i_plot == i_trial['oddity_index']: plt.title('odd-one-out')
|
102 |
+
plt.axis('off')
|
103 |
+
plt.show()
|
104 |
+
```
|
105 |
+
<img src="assets/example_trial.png" alt="example trial"/>
|