tzler commited on
Commit
c9cf783
·
verified ·
1 Parent(s): 603a583

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -0
README.md CHANGED
@@ -45,3 +45,61 @@ configs:
45
  - split: train
46
  path: data/train-*
47
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  - split: train
46
  path: data/train-*
47
  ---
48
+
49
+ ## MOCHI: Multiview Object Consistency in Humans and Image models
50
+
51
+ We introduce **MOCHI** (Multiview Obect Consistency in Humans and Image models), a benchmark to evaluate the alignment between humans and image models on 3D shape understanding.
52
+
53
+ To download dataset from huggingface, install relevant huggingface libraries
54
+
55
+ ```
56
+ pip install datasets huggingface_hub
57
+ ```
58
+ and download MOCHI
59
+
60
+ ```python
61
+ from datasets import load_dataset
62
+
63
+ # download huggingface dataset
64
+ benchmark = load_dataset("tzler/MOCHI")['train']
65
+
66
+ # there are 2019 trials let's pick one
67
+ i_trial = benchmark[1879]
68
+ ```
69
+
70
+ Here, `i_trial` is a dictionary with trial-related data including human (`human` and `RT`) and model (`DINOv2G`) performance measures:
71
+
72
+ ```
73
+ {'dataset': 'shapegen',
74
+ 'condition': 'abstract2',
75
+ 'trial': 'shapegen2527',
76
+ 'n_objects': 3,
77
+ 'oddity_index': 2,
78
+ 'images': [<PIL.PngImagePlugin.PngImageFile image mode=RGB size=1000x1000>,
79
+ <PIL.PngImagePlugin.PngImageFile image mode=RGB size=1000x1000>,
80
+ <PIL.PngImagePlugin.PngImageFile image mode=RGB size=1000x1000>],
81
+ 'n_subjects': 15,
82
+ 'human_avg': 1.0,
83
+ 'human_sem': 0.0,
84
+ 'human_std': 0.0,
85
+ 'RT_avg': 4324.733333333334,
86
+ 'RT_sem': 544.4202024405384,
87
+ 'RT_std': 2108.530377391076,
88
+ 'DINOv2G_avg': 1.0,
89
+ 'DINOv2G_std': 0.0,
90
+ 'DINOv2G_sem': 0.0}```
91
+
92
+ ```
93
+
94
+ as well as this trial's images:
95
+
96
+ ```python
97
+ plt.figure(figsize=[15,4])
98
+ for i_plot in range(len(i_trial['images'])):
99
+ plt.subplot(1,len(i_trial['images']),i_plot+1)
100
+ plt.imshow(i_trial['images'][i_plot])
101
+ if i_plot == i_trial['oddity_index']: plt.title('odd-one-out')
102
+ plt.axis('off')
103
+ plt.show()
104
+ ```
105
+ <img src="assets/example_trial.png" alt="example trial"/>