File size: 3,980 Bytes
49249de
 
 
 
 
 
bb5992e
 
 
49249de
bb5992e
 
 
 
 
 
 
 
 
 
 
49249de
bb5992e
 
 
 
49249de
 
 
 
 
bb5992e
49249de
 
 
 
 
 
 
 
 
bb5992e
49249de
 
 
 
 
 
 
 
bb5992e
49249de
 
bb5992e
49249de
 
 
bb5992e
49249de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
""" NER dataset compiled by T-NER library https://github.com/asahi417/tner/tree/master/tner """
import json
from itertools import chain
import datasets

logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """[wikineural](https://aclanthology.org/2021.findings-emnlp.215/)"""
_NAME = "wikineural"
_VERSION = "1.0.0"
_CITATION = """
@inproceedings{tedeschi-etal-2021-wikineural-combined,
    title = "{W}iki{NE}u{R}al: {C}ombined Neural and Knowledge-based Silver Data Creation for Multilingual {NER}",
    author = "Tedeschi, Simone  and
      Maiorca, Valentino  and
      Campolungo, Niccol{\`o}  and
      Cecconi, Francesco  and
      Navigli, Roberto",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-emnlp.215",
    doi = "10.18653/v1/2021.findings-emnlp.215",
    pages = "2521--2533",
    abstract = "Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.",
}
"""

_HOME_PAGE = "https://github.com/asahi417/tner"
_URL = f'https://huggingface.co/datasets/tner/{_NAME}/resolve/main/dataset'
_LANGUAGE = ['de', 'en', 'es', 'fr', 'it', 'nl', 'pl', 'pt', 'ru']
_URLS = {
    l: {
      str(datasets.Split.TEST): [f'{_URL}/{l}/test.jsonl'],
      str(datasets.Split.TRAIN): [f'{_URL}/{l}/train.jsonl'],
      str(datasets.Split.VALIDATION): [f'{_URL}/{l}/dev.jsonl']
     } for l in _LANGUAGE
}


class WikiNeuralConfig(datasets.BuilderConfig):
    """BuilderConfig"""

    def __init__(self, **kwargs):
        """BuilderConfig.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(WikiNeuralConfig, self).__init__(**kwargs)


class WikiNeural(datasets.GeneratorBasedBuilder):
    """Dataset."""

    BUILDER_CONFIGS = [
        WikiNeuralConfig(name=l, version=datasets.Version(_VERSION), description=f"{_DESCRIPTION} (language: {l})") for l in _LANGUAGE
    ]

    def _split_generators(self, dl_manager):
        downloaded_file = dl_manager.download_and_extract(_URLS[self.config.name])
        return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
                for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]

    def _generate_examples(self, filepaths):
        _key = 0
        for filepath in filepaths:
            logger.info(f"generating examples from = {filepath}")
            with open(filepath, encoding="utf-8") as f:
                _list = [i for i in f.read().split('\n') if len(i) > 0]
                for i in _list:
                    data = json.loads(i)
                    yield _key, data
                    _key += 1

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "tags": datasets.Sequence(datasets.Value("int32")),
                }
            ),
            supervised_keys=None,
            homepage=_HOME_PAGE,
            citation=_CITATION,
        )