Datasets:
tner
/

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 2,693 Bytes
1484fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f36ab2
 
 
 
1484fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f36ab2
 
 
1484fd5
 
 
 
d96c316
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 1k<10K
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: TweetNER7
---

# Dataset Card for "tner/tweetner7"

## Dataset Description

- **Repository:** [T-NER](https://github.com/asahi417/tner)
- **Paper:** TBA
- **Dataset:** TweetNER7
- **Domain:** Twitter
- **Number of Entity:** 7


### Dataset Summary
TweeBank NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
- Entity Types: `corperation`, `creative_work`, `event`, `group`, `location`, `product`, `person` 

## Dataset Structure

### Data Instances
An example of `train` looks as follows.

```
{
    'tokens': ['Morning', '5km', 'run', 'with', '{{USERNAME}}', 'for', 'breast', 'cancer', 'awareness', '#', 'pinkoctober', '#', 'breastcancerawareness', '#', 'zalorafit', '#', 'zalorafitxbnwrc', '@', 'The', 'Central', 'Park', ',', 'Desa', 'Parkcity', '{{URL}}'],
    'tags': [14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 2, 14, 2, 14, 14, 14, 14, 14, 14, 4, 11, 11, 11, 11, 14],
    'id': '1183344337016381440',
    'date': '2019-10-13'
}
```

### Label ID
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/tweetner7/raw/main/dataset/label.json).
```python
{
    "B-corporation": 0,
    "B-creative_work": 1,
    "B-event": 2,
    "B-group": 3,
    "B-location": 4,
    "B-person": 5,
    "B-product": 6,
    "I-corporation": 7,
    "I-creative_work": 8,
    "I-event": 9,
    "I-group": 10,
    "I-location": 11,
    "I-person": 12,
    "I-product": 13,
    "O": 14
}
```

### Data Splits

|  name    |train|validation|test|train_2020|validation_2020|test_2020|train_2021|validation_2021|test_2021|extra_2020|extra_2021|
|----------|----:|---------:|---:|---------:|--------------:|--------:|---------:|--------------:|--------:|---------:|---------:|
|tweetner7 | 4616|      576 |2807|4616      |         576   | 576     | 2495     | 310           | 2807    | 87880    | 93594    |

### Citation Information

```
@inproceedings{ushio-etal-2022-tweet,
    title = "{N}amed {E}ntity {R}ecognition in {T}witter: {A} {D}ataset and {A}nalysis on {S}hort-{T}erm {T}emporal {S}hifts",
    author = "Ushio, Asahi  and
        Camacho-Collados, Jose  and
        Neves, Leonardo  and
        Silva, Vitor  and
        Barbieri, Francesco",
    booktitle = "The 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing",
    month = nov,
    year = "2022",
    address = "Online",
    publisher = "Association for Computational Linguistics",
}
```