Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
100K - 1M
ArXiv:
License:
File size: 4,906 Bytes
1484fd5 4e9c08e 1484fd5 187df4d 326d755 1484fd5 5fb2549 dd2d860 5fb2549 1ff8f68 5fb2549 1ff8f68 5fb2549 dd2d860 1484fd5 2f36ab2 1484fd5 d96c316 f5277de d96c316 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 1k<10K
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: TweetNER7
---
# Dataset Card for "tner/tweetner7"
## Dataset Description
- **Repository:** [https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper](https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper)
- **Paper:** TBA
- **Dataset:** TweetNER7
- **Domain:** Twitter
- **Number of Entity:** 7
### Dataset Summary
This is an official of TweetNER7 ("Named Entity Recognition in Twitter:
A Dataset and Analysis on Short-Term Temporal Shifts, AACL main conference 2022"), an NER dataset on Twitter with 7 entity labels. Each instance of TweetNER7 comes with
a timestamp which distributes from September 2019 to August 2021.
- Entity Types: `corperation`, `creative_work`, `event`, `group`, `location`, `product`, `person`
### Preprocessing
We pre-process tweets before the annotation to normalize some artifacts, converting URLs into a special token `{{URL}}` and non-verified usernames into `{{USERNAME}}`.
For verified usernames, we replace its display name with symbols `{@}`.
For example, a tweet
```
Get the all-analog Classic Vinyl Edition
of "Takin' Off" Album from @herbiehancock
via @bluenoterecords link below:
http://bluenote.lnk.to/AlbumOfTheWeek
```
is transformed into the following text.
```
Get the all-analog Classic Vinyl Edition
of "Takin' Off" Album from {@Herbie Hancock@}
via {{USERNAME}} link below: {{URL}}
```
We ask annotators to ignore those special tokens but label the verified users' mentions.
### Data Split
| split | number of instances | description |
|:------------------|------:|------:|
| train_2020 | 4616 | training dataset from September 2019 to August 2020 |
| train_2021 | 2495 | training dataset from September 2020 to August 2021 |
| train_all | 7111 | combined training dataset of `train_2020` and `train_2021` |
| validation_2020 | 576 | validation dataset from September 2019 to August 2020 |
| validation_2021 | 310 | validation dataset from September 2020 to August 2021 |
| validation_all | 886 | combined validation dataset of `validation_2020` and `validation_2021` |
| test_2020 | 576 | test dataset from September 2019 to August 2020 |
| test_2021 | 2807 | test dataset from September 2020 to August 2021 |
| test_all | 3383 | combined test dataset of `test_2020` and `test_2021` |
| train_random | 4616 | randomly sampled training dataset with the same size as `train_2020` from `train_all` |
| validation_random | 576 | randomly sampled training dataset with the same size as `validation_2020` from `validation_all` |
| extra_2020 | 87880 | extra tweet without annotations from September 2019 to August 2020 |
| extra_2021 | 93594 | extra tweet without annotations from September 2020 to August 2021 |
### Reproduce Experimental Result
To reproduce the experimental result on our AACL paper, please see the repository
[https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper](https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper).
## Dataset Structure
### Data Instances
An example of `train` looks as follows.
```
{
'tokens': ['Morning', '5km', 'run', 'with', '{{USERNAME}}', 'for', 'breast', 'cancer', 'awareness', '#', 'pinkoctober', '#', 'breastcancerawareness', '#', 'zalorafit', '#', 'zalorafitxbnwrc', '@', 'The', 'Central', 'Park', ',', 'Desa', 'Parkcity', '{{URL}}'],
'tags': [14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 2, 14, 2, 14, 14, 14, 14, 14, 14, 4, 11, 11, 11, 11, 14],
'id': '1183344337016381440',
'date': '2019-10-13'
}
```
### Label ID
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/tweetner7/raw/main/dataset/label.json).
```python
{
"B-corporation": 0,
"B-creative_work": 1,
"B-event": 2,
"B-group": 3,
"B-location": 4,
"B-person": 5,
"B-product": 6,
"I-corporation": 7,
"I-creative_work": 8,
"I-event": 9,
"I-group": 10,
"I-location": 11,
"I-person": 12,
"I-product": 13,
"O": 14
}
```
### Citation Information
```
@inproceedings{ushio-etal-2022-tweet,
title = "{N}amed {E}ntity {R}ecognition in {T}witter: {A} {D}ataset and {A}nalysis on {S}hort-{T}erm {T}emporal {S}hifts",
author = "Ushio, Asahi and
Neves, Leonardo and
Silva, Vitor and
Barbieri, Francesco. and
Camacho-Collados, Jose",
booktitle = "The 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing",
month = nov,
year = "2022",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```
|