Datasets:
tner
/

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 4,906 Bytes
1484fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e9c08e
1484fd5
 
 
 
 
 
 
187df4d
 
326d755
1484fd5
 
5fb2549
dd2d860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fb2549
1ff8f68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fb2549
1ff8f68
5fb2549
 
dd2d860
1484fd5
 
 
 
 
 
 
2f36ab2
 
 
 
1484fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d96c316
 
 
 
 
f5277de
 
d96c316
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 1k<10K
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: TweetNER7
---

# Dataset Card for "tner/tweetner7"

## Dataset Description

- **Repository:** [https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper](https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper)
- **Paper:** TBA
- **Dataset:** TweetNER7
- **Domain:** Twitter
- **Number of Entity:** 7


### Dataset Summary
This is an official of TweetNER7 ("Named Entity Recognition in Twitter:
A Dataset and Analysis on Short-Term Temporal Shifts, AACL main conference 2022"), an NER dataset on Twitter with 7 entity labels. Each instance of TweetNER7 comes with
a timestamp which distributes from September 2019 to August 2021.
- Entity Types: `corperation`, `creative_work`, `event`, `group`, `location`, `product`, `person` 

### Preprocessing
We pre-process tweets before the annotation to normalize some artifacts, converting URLs into a special token `{{URL}}` and non-verified usernames into `{{USERNAME}}`.
For verified usernames, we replace its display name with symbols `{@}`.
For example, a tweet

```
Get the all-analog Classic Vinyl Edition
of "Takin' Off" Album from @herbiehancock
via @bluenoterecords link below: 
http://bluenote.lnk.to/AlbumOfTheWeek
```

is transformed into the following text.
```
Get the all-analog Classic Vinyl Edition
of "Takin' Off" Album from {@Herbie Hancock@}
via {{USERNAME}} link below: {{URL}}
```

We ask annotators to ignore those special tokens but label the verified users' mentions.


### Data Split

| split             | number of instances | description |
|:------------------|------:|------:|
| train_2020        |  4616 | training dataset from September 2019 to August 2020 |
| train_2021        |  2495 | training dataset from September 2020 to August 2021 |
| train_all         |  7111 | combined training dataset of `train_2020` and `train_2021` |
| validation_2020   |   576 | validation dataset from September 2019 to August 2020 |
| validation_2021   |   310 | validation dataset from September 2020 to August 2021 | 
| validation_all    |   886 | combined validation dataset of `validation_2020` and `validation_2021` |
| test_2020         |   576 | test dataset from September 2019 to August 2020 |
| test_2021         |  2807 | test dataset from September 2020 to August 2021 |
| test_all          |  3383 | combined test dataset of `test_2020` and `test_2021` |
| train_random      |  4616 | randomly sampled training dataset with the same size as `train_2020` from `train_all` |
| validation_random |   576 | randomly sampled training dataset with the same size as `validation_2020` from `validation_all` |
| extra_2020        | 87880 | extra tweet without annotations from September 2019 to August 2020 |
| extra_2021        | 93594 | extra tweet without annotations from September 2020 to August 2021 |


### Reproduce Experimental Result

To reproduce the experimental result on our AACL paper, please see the repository 
[https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper](https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper).

## Dataset Structure

### Data Instances
An example of `train` looks as follows.

```
{
    'tokens': ['Morning', '5km', 'run', 'with', '{{USERNAME}}', 'for', 'breast', 'cancer', 'awareness', '#', 'pinkoctober', '#', 'breastcancerawareness', '#', 'zalorafit', '#', 'zalorafitxbnwrc', '@', 'The', 'Central', 'Park', ',', 'Desa', 'Parkcity', '{{URL}}'],
    'tags': [14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 2, 14, 2, 14, 14, 14, 14, 14, 14, 4, 11, 11, 11, 11, 14],
    'id': '1183344337016381440',
    'date': '2019-10-13'
}
```

### Label ID
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/tweetner7/raw/main/dataset/label.json).
```python
{
    "B-corporation": 0,
    "B-creative_work": 1,
    "B-event": 2,
    "B-group": 3,
    "B-location": 4,
    "B-person": 5,
    "B-product": 6,
    "I-corporation": 7,
    "I-creative_work": 8,
    "I-event": 9,
    "I-group": 10,
    "I-location": 11,
    "I-person": 12,
    "I-product": 13,
    "O": 14
}
```


### Citation Information

```
@inproceedings{ushio-etal-2022-tweet,
    title = "{N}amed {E}ntity {R}ecognition in {T}witter: {A} {D}ataset and {A}nalysis on {S}hort-{T}erm {T}emporal {S}hifts",
    author = "Ushio, Asahi  and
        Neves, Leonardo  and
        Silva, Vitor  and
        Barbieri, Francesco. and
        Camacho-Collados, Jose",
    booktitle = "The 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing",
    month = nov,
    year = "2022",
    address = "Online",
    publisher = "Association for Computational Linguistics",
}
```