File size: 24,435 Bytes
cb07198 3368b82 c6de284 cb07198 955dea1 2e3db07 955dea1 cb07198 a574fe8 cb07198 3368b82 cb07198 3368b82 cb07198 7cd7b81 cb07198 7cd7b81 cb07198 3368b82 cb07198 a574fe8 cb07198 f7c0216 16ec004 cb07198 a574fe8 cb07198 7a3b8c4 cb07198 7a3b8c4 955dea1 2e3db07 955dea1 cb07198 f624aad cb07198 3368b82 92f0b0b 3368b82 3e4900f 3368b82 4b8afb3 3368b82 4b8afb3 3368b82 4b8afb3 3368b82 4b8afb3 3368b82 4b8afb3 3368b82 cb07198 3368b82 cb07198 30c6b82 3e4900f 16ec004 9c4eb26 30c6b82 eff1b40 52d29a4 3368b82 cb07198 3368b82 cb07198 3368b82 cb07198 a574fe8 2e3db07 cb07198 a574fe8 cb07198 a574fe8 cb07198 2fa0eb5 cb07198 3368b82 cb07198 3368b82 cb07198 3368b82 cb07198 a574fe8 cb07198 2fa0eb5 cb07198 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
import os
import pandas as pd
import datasets
import sys
import pickle
import subprocess
import shutil
from urllib.request import urlretrieve
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import yaml
from .dataset_utils import vocab, concat_data, generate_deep, generate_ml
from .task_cohort import create_cohort
_DESCRIPTION = """\
Dataset for mimic4 data, by default for the Mortality task.
Available tasks are: Mortality, Length of Stay, Readmission, Phenotype.
The data is extracted from the mimic4 database using this pipeline: 'https://github.com/healthylaife/MIMIC-IV-Data-Pipeline/tree/main'
mimic path should have this form : "path/to/mimic4data/from/username/mimiciv/2.2"
If you choose a Custom task provide a configuration file for the Time series.
Currently working with Mimic-IV version 1 and 2
"""
_BASE_URL = "https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main"
_HOMEPAGE = "https://huggingface.co/datasets/thbndi/Mimic4Dataset"
_CITATION = "https://proceedings.mlr.press/v193/gupta22a.html"
_GIT_URL = "https://github.com/healthylaife/MIMIC-IV-Data-Pipeline"
_ICD_CODE = f"{_BASE_URL}/icd10.txt"
_DATA_GEN = f"{_BASE_URL}/data_generation_icu_modify.py"
_DATA_GEN_HOSP= f"{_BASE_URL}/data_generation_modify.py"
_DAY_INT= f"{_BASE_URL}/day_intervals_cohort_v22.py"
_CONFIG_URLS = {'los' : f"{_BASE_URL}/config/los.config",
'mortality' : f"{_BASE_URL}/config/mortality.config",
'phenotype' : f"{_BASE_URL}/config/phenotype.config",
'readmission' : f"{_BASE_URL}/config/readmission.config"
}
class Mimic4DatasetConfig(datasets.BuilderConfig):
"""BuilderConfig for Mimic4Dataset."""
def __init__(
self,
**kwargs,
):
super().__init__(**kwargs)
class Mimic4Dataset(datasets.GeneratorBasedBuilder):
"""Create Mimic4Dataset dataset from Mimic-IV data stored in user machine."""
VERSION = datasets.Version("1.0.0")
def __init__(self, **kwargs):
self.mimic_path = kwargs.pop("mimic_path", None)
self.encoding = kwargs.pop("encoding",'concat')
self.config_path = kwargs.pop("config_path",None)
self.test_size = kwargs.pop("test_size",0.2)
self.val_size = kwargs.pop("val_size",0.1)
self.generate_cohort = kwargs.pop("generate_cohort",True)
if self.encoding == 'concat':
self.concat = True
else:
self.concat = False
super().__init__(**kwargs)
BUILDER_CONFIGS = [
Mimic4DatasetConfig(
name="Phenotype",
version=VERSION,
description="Dataset for mimic4 Phenotype task"
),
Mimic4DatasetConfig(
name="Readmission",
version=VERSION,
description="Dataset for mimic4 Readmission task"
),
Mimic4DatasetConfig(
name="Length of Stay",
version=VERSION,
description="Dataset for mimic4 Length of Stay task"
),
Mimic4DatasetConfig(
name="Mortality",
version=VERSION,
description="Dataset for mimic4 Mortality task"
),
]
DEFAULT_CONFIG_NAME = "Mortality"
def init_cohort(self):
if self.config_path==None:
if self.config.name == 'Phenotype' : self.config_path = _CONFIG_URLS['phenotype']
if self.config.name == 'Readmission' : self.config_path = _CONFIG_URLS['readmission']
if self.config.name == 'Length of Stay' : self.config_path = _CONFIG_URLS['los']
if self.config.name == 'Mortality' : self.config_path = _CONFIG_URLS['mortality']
version = self.mimic_path.split('/')[-1]
mimic_folder= self.mimic_path.split('/')[-2]
mimic_complete_path='/'+mimic_folder+'/'+version
current_directory = os.getcwd()
if os.path.exists(os.path.dirname(current_directory)+'/MIMIC-IV-Data-Pipeline-main'):
dir =os.path.dirname(current_directory)
os.chdir(dir)
else:
#move to parent directory of mimic data
dir = self.mimic_path.replace(mimic_complete_path,'')
print('dir : ',dir)
if dir[-1]!='/':
dir=dir+'/'
elif dir=='':
dir="./"
parent_dir = os.path.dirname(self.mimic_path)
os.chdir(parent_dir)
#####################clone git repo if doesnt exists
repo_url='https://github.com/healthylaife/MIMIC-IV-Data-Pipeline'
if os.path.exists('MIMIC-IV-Data-Pipeline-main'):
path_bench = './MIMIC-IV-Data-Pipeline-main'
else:
path_bench ='./MIMIC-IV-Data-Pipeline-main'
subprocess.run(["git", "clone", repo_url, path_bench])
os.makedirs(path_bench+'/'+'mimic-iv')
shutil.move(version,path_bench+'/'+'mimic-iv')
os.chdir(path_bench)
self.mimic_path = './'+'mimic-iv'+'/'+version
####################Get configurations param
#download config file if not custom
if self.config_path[0:4] == 'http':
c = self.config_path.split('/')[-1]
file_path, head = urlretrieve(self.config_path,c)
else :
file_path = self.config_path
if not os.path.exists('./config'):
os.makedirs('config')
#save config file in config folder
self.conf='./config/'+file_path.split('/')[-1]
if not os.path.exists(self.conf):
shutil.move(file_path,'./config')
with open(self.conf) as f:
config = yaml.safe_load(f)
timeW = config['timeWindow']
self.timeW=int(timeW.split()[1])
self.bucket = config['timebucket']
self.predW = config['predW']
self.data_icu = config['icu_no_icu']=='ICU'
if self.data_icu:
self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out, self.feat_lab = config['diagnosis'], config['chart'], config['proc'], config['meds'], config['output'], False
else:
self.feat_cond, self.feat_lab, self.feat_proc, self.feat_meds, self.feat_chart, self.feat_out = config['diagnosis'], config['lab'], config['proc'], config['meds'], False, False
#####################downloads modules from hub
if not os.path.exists('./icd10.txt'):
file_path, head = urlretrieve(_ICD_CODE, "icd10.txt")
shutil.move(file_path, './')
if not os.path.exists('./model/data_generation_icu_modify.py'):
file_path, head = urlretrieve(_DATA_GEN, "data_generation_icu_modify.py")
shutil.move(file_path, './model')
if not os.path.exists('./model/data_generation_modify.py'):
file_path, head = urlretrieve(_DATA_GEN_HOSP, "data_generation_modify.py")
shutil.move(file_path, './model')
if not os.path.exists('./preprocessing/day_intervals_preproc/day_intervals_cohort_v22.py'):
file_path, head = urlretrieve(_DAY_INT, "day_intervals_cohort_v22.py")
shutil.move(file_path, './preprocessing/day_intervals_preproc')
data_dir = "./data/dict/"+self.config.name.replace(" ","_")+"/dataDic"
sys.path.append(path_bench)
config = self.config_path.split('/')[-1]
#####################create task cohort
if self.generate_cohort:
create_cohort(self.config.name.replace(" ","_"),self.mimic_path,config)
#####################Split data into train, test and val
with open(data_dir, 'rb') as fp:
dataDic = pickle.load(fp)
data = pd.DataFrame.from_dict(dataDic)
dict_dir = "./data/dict/"+self.config.name.replace(" ","_")
data=data.T
train_data, test_data = train_test_split(data, test_size=self.test_size, random_state=42)
if self.val_size > 0 :
train_data, val_data = train_test_split(train_data, test_size=self.val_size, random_state=42)
val_dic = val_data.to_dict('index')
val_path = dict_dir+'/val_data.pkl'
with open(val_path, 'wb') as f:
pickle.dump(val_dic, f)
train_dic = train_data.to_dict('index')
test_dic = test_data.to_dict('index')
train_path = dict_dir+'/train_data.pkl'
test_path = dict_dir+'/test_data.pkl'
with open(train_path, 'wb') as f:
pickle.dump(train_dic, f)
with open(test_path, 'wb') as f:
pickle.dump(test_dic, f)
return dict_dir
def verif_dim_tensor(self, proc, out, chart, meds, lab):
interv = (self.timeW//self.bucket) + 1
verif=True
if self.feat_proc:
if (len(proc)!= interv):
verif=False
if self.feat_out:
if (len(out)!=interv):
verif=False
if self.feat_chart:
if (len(chart)!=interv):
verif=False
if self.feat_meds:
if (len(meds)!=interv):
verif=False
if self.feat_lab:
if (len(lab)!=interv):
verif=False
return verif
###########################################################RAW##################################################################
def _info_raw(self):
features = datasets.Features(
{
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
"gender": datasets.Value("string"),
"ethnicity": datasets.Value("string"),
"insurance": datasets.Value("string"),
"age": datasets.Value("int32"),
"COND": datasets.Sequence(datasets.Value("string")),
"MEDS": {
"signal":
{
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
}
,
"rate":
{
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
}
,
"amount":
{
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
}
},
"PROC": {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
"CHART/LAB":
{
"signal" : {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
"val" : {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
},
"OUT": {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _generate_examples_raw(self, filepath):
with open(filepath, 'rb') as fp:
dataDic = pickle.load(fp)
for hid, data in dataDic.items():
proc_features = data['Proc']
meds_features = data['Med']
out_features = data['Out']
cond_features = data['Cond']['fids']
eth= data['ethnicity']
age = data['age']
gender = data['gender']
label = data['label']
insurance=data['insurance']
items = list(proc_features.keys())
values =[proc_features[i] for i in items ]
procs = {"id" : items,
"value": values}
items_outs = list(out_features.keys())
values_outs =[out_features[i] for i in items_outs ]
outs = {"id" : items_outs,
"value": values_outs}
if self.data_icu:
chart_features = data['Chart']
else:
chart_features = data['Lab']
#chart signal
if ('signal' in chart_features):
items_chart_sig = list(chart_features['signal'].keys())
values_chart_sig =[chart_features['signal'][i] for i in items_chart_sig ]
chart_sig = {"id" : items_chart_sig,
"value": values_chart_sig}
else:
chart_sig = {"id" : [],
"value": []}
#chart val
if ('val' in chart_features):
items_chart_val = list(chart_features['val'].keys())
values_chart_val =[chart_features['val'][i] for i in items_chart_val ]
chart_val = {"id" : items_chart_val,
"value": values_chart_val}
else:
chart_val = {"id" : [],
"value": []}
charts = {"signal" : chart_sig,
"val" : chart_val}
#meds signal
if ('signal' in meds_features):
items_meds_sig = list(meds_features['signal'].keys())
values_meds_sig =[meds_features['signal'][i] for i in items_meds_sig ]
meds_sig = {"id" : items_meds_sig,
"value": values_meds_sig}
else:
meds_sig = {"id" : [],
"value": []}
#meds rate
if ('rate' in meds_features):
items_meds_rate = list(meds_features['rate'].keys())
values_meds_rate =[meds_features['rate'][i] for i in items_meds_rate ]
meds_rate = {"id" : items_meds_rate,
"value": values_meds_rate}
else:
meds_rate = {"id" : [],
"value": []}
#meds amount
if ('amount' in meds_features):
items_meds_amount = list(meds_features['amount'].keys())
values_meds_amount =[meds_features['amount'][i] for i in items_meds_amount ]
meds_amount = {"id" : items_meds_amount,
"value": values_meds_amount}
else:
meds_amount = {"id" : [],
"value": []}
meds = {"signal" : meds_sig,
"rate" : meds_rate,
"amount" : meds_amount}
yield int(hid), {
"label" : label,
"gender" : gender,
"ethnicity" : eth,
"insurance" : insurance,
"age" : age,
"COND" : cond_features,
"PROC" : procs,
"CHART/LAB" : charts,
"OUT" : outs,
"MEDS" : meds
}
###########################################################ENCODED##################################################################
def _info_encoded(self):
features = datasets.Features(
{
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
"features" : datasets.Sequence(datasets.Value("float32")),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _generate_examples_encoded(self, filepath):
path= './data/dict/'+self.config.name.replace(" ","_")+'/ethVocab'
with open(path, 'rb') as fp:
ethVocab = pickle.load(fp)
path= './data/dict/'+self.config.name.replace(" ","_")+'/insVocab'
with open(path, 'rb') as fp:
insVocab = pickle.load(fp)
genVocab = ['<PAD>', 'M', 'F']
gen_encoder = LabelEncoder()
eth_encoder = LabelEncoder()
ins_encoder = LabelEncoder()
gen_encoder.fit(genVocab)
eth_encoder.fit(ethVocab)
ins_encoder.fit(insVocab)
with open(filepath, 'rb') as fp:
dico = pickle.load(fp)
df = pd.DataFrame.from_dict(dico, orient='index')
for i, data in df.iterrows():
concat_cols=[]
dyn_df,cond_df,demo=concat_data(data,self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab)
dyn=dyn_df.copy()
dyn.columns=dyn.columns.droplevel(0)
cols=dyn.columns
time=dyn.shape[0]
for t in range(time):
cols_t = [str(x) + "_"+str(t) for x in cols]
concat_cols.extend(cols_t)
demo['gender']=gen_encoder.transform(demo['gender'])
demo['ethnicity']=eth_encoder.transform(demo['ethnicity'])
demo['insurance']=ins_encoder.transform(demo['insurance'])
label = data['label']
demo=demo.drop(['label'],axis=1)
X= generate_ml(dyn_df,cond_df,demo,concat_cols,self.concat)
X=X.values.tolist()[0]
interv = (self.timeW//self.bucket) + 1
size_concat = self.size_cond+ self.size_proc * interv + self.size_meds * interv+ self.size_out * interv+ self.size_chart *interv+ self.size_lab * interv + 4
size_aggreg = self.size_cond+ self.size_proc + self.size_meds+ self.size_out+ self.size_chart+ self.size_lab + 4
if ((self.concat and len(X)==size_concat) or ((not self.concat) and len(X)==size_aggreg)):
yield int(i), {
"label": label,
"features": X,
}
######################################################DEEP###############################################################
def _info_deep(self):
features = datasets.Features(
{
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
"DEMO": datasets.Sequence(datasets.Value("int64")),
"COND" : datasets.Sequence(datasets.Value("int64")),
"MEDS" : datasets.Array2D(shape=(None, self.size_meds), dtype='int64') ,
"PROC" : datasets.Array2D(shape=(None, self.size_proc), dtype='int64') ,
"CHART/LAB" : datasets.Array2D(shape=(None, self.size_chart), dtype='int64') ,
"OUT" : datasets.Array2D(shape=(None, self.size_out), dtype='int64') ,
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _generate_examples_deep(self, filepath):
with open(filepath, 'rb') as fp:
dico = pickle.load(fp)
for key, data in dico.items():
stat, demo, meds, chart, out, proc, lab, y = generate_deep(data, self.config.name.replace(" ","_"), self.feat_cond, self.feat_proc, self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab)
if self.verif_dim_tensor(proc, out, chart, meds, lab):
if self.data_icu:
yield int(key), {
'label': y,
'DEMO': demo,
'COND': stat,
'MEDS': meds,
'PROC': proc,
'CHART/LAB': chart,
'OUT': out,
}
else:
yield int(key), {
'label': y,
'DEMO': demo,
'COND': stat,
'MEDS': meds,
'PROC': proc,
'CHART/LAB': lab,
'OUT': out,
}
######################################################text##############################################################
def _info_text(self):
features = datasets.Features(
{
"label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
"COND" : datasets.Value(dtype='string', id=None),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _generate_examples_text(self, filepath):
icd = pd.read_csv('icd10.txt',names=['code','description'],sep='\t')
with open(filepath, 'rb') as fp:
dico = pickle.load(fp)
for key, data in dico.items():
conds = data['Cond']['fids']
text=[]
for code in conds:
desc = icd[icd['code']==code]
if not desc.empty:
text.append(desc['description'].to_string(index=False))
template = 'The patient is diagnosed with {}.'
text = template.format('; '.join(text))
yield int(key),{
'label' : data['label'],
'COND': text,
}
#############################################################################################################################
def _info(self):
self.path = self.init_cohort()
self.size_cond, self.size_proc, self.size_meds, self.size_out, self.size_chart, self.size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_meds,self.feat_lab)
if (self.encoding == 'concat' or self.encoding =='aggreg'):
return self._info_encoded()
elif self.encoding == 'tensor' :
return self._info_deep()
elif self.encoding == 'text' :
return self._info_text()
else:
return self._info_raw()
def _split_generators(self, dl_manager):
data_dir = "./data/dict/"+self.config.name.replace(" ","_")
if self.val_size > 0 :
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir+'/train_data.pkl'}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_dir+'/val_data.pkl'}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir+'/test_data.pkl'}),
]
else :
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir+'/train_data.pkl'}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir+'/test_data.pkl'}),
]
def _generate_examples(self, filepath):
if (self.encoding == 'concat' or self.encoding == 'aggreg'):
yield from self._generate_examples_encoded(filepath)
elif self.encoding == 'tensor' :
yield from self._generate_examples_deep(filepath)
elif self.encoding == 'text' :
yield from self._generate_examples_text(filepath)
else :
yield from self._generate_examples_raw(filepath) |