File size: 24,435 Bytes
cb07198
 
 
 
 
 
 
 
 
 
 
3368b82
 
c6de284
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
955dea1
2e3db07
955dea1
 
 
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a574fe8
cb07198
 
 
 
 
 
 
 
 
3368b82
cb07198
 
 
 
 
 
 
3368b82
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
7cd7b81
 
cb07198
 
7cd7b81
cb07198
 
 
 
 
 
 
 
 
 
3368b82
cb07198
 
 
 
 
 
a574fe8
 
cb07198
 
 
f7c0216
16ec004
cb07198
a574fe8
cb07198
7a3b8c4
cb07198
7a3b8c4
955dea1
 
 
2e3db07
 
 
 
955dea1
 
 
 
 
 
 
 
 
 
 
cb07198
 
 
 
 
 
 
f624aad
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3368b82
92f0b0b
3368b82
3e4900f
3368b82
 
4b8afb3
3368b82
 
4b8afb3
3368b82
 
4b8afb3
3368b82
 
4b8afb3
3368b82
 
4b8afb3
3368b82
 
 
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3368b82
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
30c6b82
3e4900f
16ec004
9c4eb26
30c6b82
eff1b40
52d29a4
 
 
 
3368b82
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3368b82
cb07198
3368b82
 
 
cb07198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a574fe8
2e3db07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb07198
 
a574fe8
cb07198
a574fe8
cb07198
 
 
 
2fa0eb5
 
 
 
cb07198
 
 
 
3368b82
cb07198
 
3368b82
 
 
cb07198
 
 
3368b82
 
cb07198
 
 
a574fe8
cb07198
 
 
 
2fa0eb5
 
 
 
cb07198
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
import os
import pandas as pd
import datasets
import sys
import pickle
import subprocess
import shutil
from urllib.request import urlretrieve
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import yaml
from .dataset_utils import vocab, concat_data, generate_deep, generate_ml
from .task_cohort import create_cohort



_DESCRIPTION = """\
Dataset for mimic4 data, by default for the Mortality task.
Available tasks are: Mortality, Length of Stay, Readmission, Phenotype.
The data is extracted from the mimic4 database using this pipeline: 'https://github.com/healthylaife/MIMIC-IV-Data-Pipeline/tree/main'
mimic path should have this form : "path/to/mimic4data/from/username/mimiciv/2.2"
If you choose a Custom task provide a configuration file for the Time series.
Currently working with Mimic-IV version 1 and 2
"""
_BASE_URL = "https://huggingface.co/datasets/thbndi/Mimic4Dataset/resolve/main"
_HOMEPAGE = "https://huggingface.co/datasets/thbndi/Mimic4Dataset"

_CITATION = "https://proceedings.mlr.press/v193/gupta22a.html"
_GIT_URL = "https://github.com/healthylaife/MIMIC-IV-Data-Pipeline"

_ICD_CODE = f"{_BASE_URL}/icd10.txt"
_DATA_GEN = f"{_BASE_URL}/data_generation_icu_modify.py"
_DATA_GEN_HOSP= f"{_BASE_URL}/data_generation_modify.py"
_DAY_INT= f"{_BASE_URL}/day_intervals_cohort_v22.py"
_CONFIG_URLS = {'los' : f"{_BASE_URL}/config/los.config",
                'mortality' : f"{_BASE_URL}/config/mortality.config",
                'phenotype' : f"{_BASE_URL}/config/phenotype.config",
                'readmission' : f"{_BASE_URL}/config/readmission.config"
        }


class Mimic4DatasetConfig(datasets.BuilderConfig):
    """BuilderConfig for Mimic4Dataset."""

    def __init__(
        self,
        **kwargs,
    ):
        super().__init__(**kwargs)


class Mimic4Dataset(datasets.GeneratorBasedBuilder):
    """Create Mimic4Dataset dataset from Mimic-IV data stored in user machine."""
    VERSION = datasets.Version("1.0.0")

    def __init__(self, **kwargs):
        self.mimic_path = kwargs.pop("mimic_path", None)
        self.encoding = kwargs.pop("encoding",'concat')
        self.config_path = kwargs.pop("config_path",None)
        self.test_size = kwargs.pop("test_size",0.2)
        self.val_size = kwargs.pop("val_size",0.1)
        self.generate_cohort = kwargs.pop("generate_cohort",True)

        if self.encoding == 'concat':
            self.concat = True
        else:
            self.concat = False
            
        super().__init__(**kwargs)
        
        
    BUILDER_CONFIGS = [
        Mimic4DatasetConfig(
            name="Phenotype",
            version=VERSION,
            description="Dataset for mimic4 Phenotype task"
        ),
        Mimic4DatasetConfig(
            name="Readmission",
            version=VERSION,
            description="Dataset for mimic4 Readmission task"
        ),
        Mimic4DatasetConfig(
            name="Length of Stay",
            version=VERSION,
            description="Dataset for mimic4 Length of Stay task"
        ),
        Mimic4DatasetConfig(
            name="Mortality",
            version=VERSION,
            description="Dataset for mimic4 Mortality task"
        ),
    ]
    
    DEFAULT_CONFIG_NAME = "Mortality"
        
    def init_cohort(self):
        if self.config_path==None:
            if self.config.name == 'Phenotype' : self.config_path = _CONFIG_URLS['phenotype'] 
            if self.config.name == 'Readmission' : self.config_path = _CONFIG_URLS['readmission'] 
            if self.config.name == 'Length of Stay' : self.config_path = _CONFIG_URLS['los'] 
            if self.config.name == 'Mortality' : self.config_path = _CONFIG_URLS['mortality']
        
        version = self.mimic_path.split('/')[-1]
        mimic_folder= self.mimic_path.split('/')[-2]
        mimic_complete_path='/'+mimic_folder+'/'+version

        current_directory = os.getcwd()
        if os.path.exists(os.path.dirname(current_directory)+'/MIMIC-IV-Data-Pipeline-main'):
            dir =os.path.dirname(current_directory) 
            os.chdir(dir)
        else:
            #move to parent directory of mimic data
            dir = self.mimic_path.replace(mimic_complete_path,'')
            print('dir : ',dir)
            if dir[-1]!='/':
                dir=dir+'/'
            elif dir=='':
                dir="./"
            parent_dir = os.path.dirname(self.mimic_path)
            os.chdir(parent_dir)

        #####################clone git repo if doesnt exists
        repo_url='https://github.com/healthylaife/MIMIC-IV-Data-Pipeline'
        if os.path.exists('MIMIC-IV-Data-Pipeline-main'):
            path_bench = './MIMIC-IV-Data-Pipeline-main'
        else:
            path_bench ='./MIMIC-IV-Data-Pipeline-main'
            subprocess.run(["git", "clone", repo_url, path_bench])
            os.makedirs(path_bench+'/'+'mimic-iv')
            shutil.move(version,path_bench+'/'+'mimic-iv')

        os.chdir(path_bench)
        self.mimic_path = './'+'mimic-iv'+'/'+version

        ####################Get configurations param
        #download config file if not custom
        if self.config_path[0:4] == 'http':
            c = self.config_path.split('/')[-1]
            file_path, head = urlretrieve(self.config_path,c)
        else :
            file_path = self.config_path
        if not os.path.exists('./config'):
            os.makedirs('config')
        
        #save config file in config folder
        self.conf='./config/'+file_path.split('/')[-1]
        if not os.path.exists(self.conf):
            shutil.move(file_path,'./config')
        with open(self.conf) as f:
            config = yaml.safe_load(f)

            
        timeW = config['timeWindow']
        self.timeW=int(timeW.split()[1])
        self.bucket = config['timebucket']
        self.predW = config['predW']

        self.data_icu = config['icu_no_icu']=='ICU'
        
        if self.data_icu:
            self.feat_cond, self.feat_chart, self.feat_proc, self.feat_meds, self.feat_out, self.feat_lab = config['diagnosis'], config['chart'], config['proc'],  config['meds'], config['output'], False
        else:
            self.feat_cond, self.feat_lab, self.feat_proc, self.feat_meds, self.feat_chart, self.feat_out = config['diagnosis'], config['lab'], config['proc'],  config['meds'], False, False

        
        #####################downloads modules from hub
        if not os.path.exists('./icd10.txt'):
            file_path, head = urlretrieve(_ICD_CODE, "icd10.txt")
            shutil.move(file_path, './')    
                
        if not os.path.exists('./model/data_generation_icu_modify.py'):
            file_path, head = urlretrieve(_DATA_GEN, "data_generation_icu_modify.py")
            shutil.move(file_path, './model')

        if not os.path.exists('./model/data_generation_modify.py'):
            file_path, head = urlretrieve(_DATA_GEN_HOSP, "data_generation_modify.py")
            shutil.move(file_path, './model')

        if not os.path.exists('./preprocessing/day_intervals_preproc/day_intervals_cohort_v22.py'):
            file_path, head = urlretrieve(_DAY_INT, "day_intervals_cohort_v22.py")
            shutil.move(file_path, './preprocessing/day_intervals_preproc')
            
        data_dir = "./data/dict/"+self.config.name.replace(" ","_")+"/dataDic"
        sys.path.append(path_bench)
        config = self.config_path.split('/')[-1]

        #####################create task cohort
        if self.generate_cohort:
            create_cohort(self.config.name.replace(" ","_"),self.mimic_path,config)

        #####################Split data into train, test and val
        with open(data_dir, 'rb') as fp:
            dataDic = pickle.load(fp)
        data = pd.DataFrame.from_dict(dataDic)

        dict_dir = "./data/dict/"+self.config.name.replace(" ","_")
        
        data=data.T
        train_data, test_data = train_test_split(data, test_size=self.test_size, random_state=42)
        if self.val_size > 0 :
            train_data, val_data = train_test_split(train_data, test_size=self.val_size, random_state=42)
            val_dic = val_data.to_dict('index')
            val_path = dict_dir+'/val_data.pkl'
            with open(val_path, 'wb') as f:
                pickle.dump(val_dic, f)
        
        train_dic = train_data.to_dict('index')
        test_dic = test_data.to_dict('index')
    
        train_path = dict_dir+'/train_data.pkl'
        test_path = dict_dir+'/test_data.pkl'
        
        with open(train_path, 'wb') as f:
            pickle.dump(train_dic, f)
        with open(test_path, 'wb') as f:
            pickle.dump(test_dic, f)
        return dict_dir
    

    def verif_dim_tensor(self, proc, out, chart, meds, lab):
        interv = (self.timeW//self.bucket) + 1
        verif=True
        if self.feat_proc:
            if (len(proc)!= interv):
                verif=False
        if self.feat_out:
            if (len(out)!=interv):
                verif=False
        if self.feat_chart:
            if (len(chart)!=interv):
                verif=False
        if self.feat_meds:
            if (len(meds)!=interv):
                verif=False
        if self.feat_lab:
            if (len(lab)!=interv):
                verif=False
        return verif

###########################################################RAW##################################################################

    def _info_raw(self):
        features = datasets.Features(
            {
                "label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
                "gender": datasets.Value("string"),
                "ethnicity": datasets.Value("string"),
                "insurance": datasets.Value("string"),
                "age": datasets.Value("int32"),
                "COND": datasets.Sequence(datasets.Value("string")),
                "MEDS": {
                            "signal": 
                                {
                                    "id": datasets.Sequence(datasets.Value("int32")),
                                    "value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
                                }
                            ,
                            "rate": 
                                {
                                    "id": datasets.Sequence(datasets.Value("int32")),
                                    "value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
                                }
                            ,
                            "amount": 
                                {
                                    "id": datasets.Sequence(datasets.Value("int32")),
                                    "value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
                                }
                            
                        },
                "PROC":  {
                            "id": datasets.Sequence(datasets.Value("int32")),
                            "value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
                                },
                "CHART/LAB":
                    {
                        "signal" : {
                            "id": datasets.Sequence(datasets.Value("int32")),
                            "value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
                                },
                        "val" : {
                            "id": datasets.Sequence(datasets.Value("int32")),
                            "value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
                                },
                    },
                "OUT":  {
                            "id": datasets.Sequence(datasets.Value("int32")),
                            "value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
                                },
                
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _generate_examples_raw(self, filepath):
        with open(filepath, 'rb') as fp:
            dataDic = pickle.load(fp)
        for hid, data in dataDic.items():
            proc_features = data['Proc']
            meds_features = data['Med']
            out_features = data['Out']
            cond_features = data['Cond']['fids']
            eth= data['ethnicity']
            age = data['age']
            gender = data['gender']
            label = data['label']
            insurance=data['insurance']
            
            items = list(proc_features.keys())
            values =[proc_features[i] for i in items ]
            procs = {"id" : items,
                  "value": values}
            
            items_outs = list(out_features.keys())
            values_outs =[out_features[i] for i in items_outs ]
            outs = {"id" : items_outs,
                  "value": values_outs}

            if self.data_icu:
                chart_features = data['Chart']
            else:
                chart_features = data['Lab']

            #chart signal
            if ('signal' in chart_features):
                items_chart_sig = list(chart_features['signal'].keys())
                values_chart_sig =[chart_features['signal'][i] for i in items_chart_sig ]
                chart_sig = {"id" : items_chart_sig,
                        "value": values_chart_sig}
            else:
                chart_sig = {"id" : [],
                        "value": []}
            #chart val
            if ('val' in chart_features):
                items_chart_val = list(chart_features['val'].keys())
                values_chart_val =[chart_features['val'][i] for i in items_chart_val ]
                chart_val = {"id" : items_chart_val,
                        "value": values_chart_val}
            else:
                chart_val = {"id" : [],
                        "value": []}
                
            charts = {"signal" : chart_sig,
                    "val" : chart_val}

            #meds signal
            if ('signal' in meds_features):
                items_meds_sig = list(meds_features['signal'].keys())
                values_meds_sig =[meds_features['signal'][i] for i in items_meds_sig ]
                meds_sig = {"id" : items_meds_sig,
                    "value": values_meds_sig}
            else:
                meds_sig = {"id" : [],
                    "value": []}
            #meds rate
            if ('rate' in meds_features):
                items_meds_rate = list(meds_features['rate'].keys())
                values_meds_rate =[meds_features['rate'][i] for i in items_meds_rate ]
                meds_rate = {"id" : items_meds_rate,
                        "value": values_meds_rate}
            else:
                meds_rate = {"id" : [],
                        "value": []}
            #meds amount
            if ('amount' in meds_features):
                items_meds_amount = list(meds_features['amount'].keys())
                values_meds_amount =[meds_features['amount'][i] for i in items_meds_amount ]
                meds_amount = {"id" : items_meds_amount,
                        "value": values_meds_amount}
            else:
                meds_amount = {"id" : [],
                        "value": []}
            
            meds = {"signal" : meds_sig,
                    "rate" : meds_rate,
                    "amount" : meds_amount}
            

            yield int(hid), {
                "label" : label,
                "gender" : gender,
                "ethnicity" : eth,
                "insurance" : insurance,
                "age" : age,
                "COND" : cond_features,
                "PROC" : procs,
                "CHART/LAB" : charts,
                "OUT" : outs,
                "MEDS" : meds
            }



###########################################################ENCODED##################################################################
        
    def _info_encoded(self):
        features = datasets.Features(
            {
                "label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
                "features" : datasets.Sequence(datasets.Value("float32")),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _generate_examples_encoded(self, filepath):
        path= './data/dict/'+self.config.name.replace(" ","_")+'/ethVocab'
        with open(path, 'rb') as fp:
            ethVocab = pickle.load(fp)

        path= './data/dict/'+self.config.name.replace(" ","_")+'/insVocab'
        with open(path, 'rb') as fp:
            insVocab = pickle.load(fp)

        genVocab = ['<PAD>', 'M', 'F']
        gen_encoder = LabelEncoder()
        eth_encoder = LabelEncoder()
        ins_encoder = LabelEncoder()
        gen_encoder.fit(genVocab)
        eth_encoder.fit(ethVocab)
        ins_encoder.fit(insVocab)
        with open(filepath, 'rb') as fp:
            dico = pickle.load(fp)

        df = pd.DataFrame.from_dict(dico, orient='index')
        for i, data in df.iterrows():
            concat_cols=[]
            dyn_df,cond_df,demo=concat_data(data,self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out, self.feat_chart, self.feat_meds,self.feat_lab)
            dyn=dyn_df.copy()
            dyn.columns=dyn.columns.droplevel(0)
            cols=dyn.columns
            time=dyn.shape[0]
            for t in range(time):
                cols_t = [str(x) + "_"+str(t) for x in cols]
                concat_cols.extend(cols_t)
            demo['gender']=gen_encoder.transform(demo['gender'])
            demo['ethnicity']=eth_encoder.transform(demo['ethnicity'])
            demo['insurance']=ins_encoder.transform(demo['insurance'])
            label = data['label']
            demo=demo.drop(['label'],axis=1)
            X= generate_ml(dyn_df,cond_df,demo,concat_cols,self.concat)
            X=X.values.tolist()[0]
            
            interv = (self.timeW//self.bucket) + 1
            size_concat = self.size_cond+ self.size_proc * interv + self.size_meds * interv+ self.size_out * interv+ self.size_chart *interv+ self.size_lab * interv + 4
            size_aggreg = self.size_cond+ self.size_proc + self.size_meds+ self.size_out+ self.size_chart+ self.size_lab + 4

            if ((self.concat and len(X)==size_concat) or ((not self.concat) and len(X)==size_aggreg)):
                yield int(i), {
                    "label": label,
                    "features": X,
                }

######################################################DEEP###############################################################
    def _info_deep(self):
        features = datasets.Features(
            {
                "label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
                "DEMO": datasets.Sequence(datasets.Value("int64")),
                "COND" : datasets.Sequence(datasets.Value("int64")),
                "MEDS" : datasets.Array2D(shape=(None, self.size_meds), dtype='int64') ,
                "PROC" : datasets.Array2D(shape=(None, self.size_proc), dtype='int64') ,
                "CHART/LAB" : datasets.Array2D(shape=(None, self.size_chart), dtype='int64') ,
                "OUT" : datasets.Array2D(shape=(None, self.size_out), dtype='int64') ,
                
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    
    def _generate_examples_deep(self, filepath):
        with open(filepath, 'rb') as fp:
            dico = pickle.load(fp)

        for key, data in dico.items():   
            stat, demo, meds, chart, out, proc, lab, y = generate_deep(data, self.config.name.replace(" ","_"), self.feat_cond,  self.feat_proc,  self.feat_out,  self.feat_chart, self.feat_meds,self.feat_lab)
            
            if self.verif_dim_tensor(proc, out, chart, meds, lab):
                if self.data_icu:
                    yield int(key), {
                        'label': y,
                        'DEMO': demo,
                        'COND': stat,
                        'MEDS': meds,
                        'PROC': proc,
                        'CHART/LAB': chart,
                        'OUT': out,
                        }
                else:
                    yield int(key), {
                        'label': y,
                        'DEMO': demo,
                        'COND': stat,
                        'MEDS': meds,
                        'PROC': proc,
                        'CHART/LAB': lab,
                        'OUT': out,
                        }          
 ######################################################text##############################################################
    def _info_text(self):
        features = datasets.Features(
            {
                "label": datasets.ClassLabel(num_classes=2,names=["0", "1"]),
                "COND" : datasets.Value(dtype='string', id=None),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _generate_examples_text(self, filepath):
        icd = pd.read_csv('icd10.txt',names=['code','description'],sep='\t')
        with open(filepath, 'rb') as fp:
            dico = pickle.load(fp)
        for key, data in dico.items():
            conds = data['Cond']['fids']
            text=[]
            for code in conds:
                desc = icd[icd['code']==code]
                if not desc.empty:
                    text.append(desc['description'].to_string(index=False))
            template = 'The patient is diagnosed with {}.'
            text = template.format('; '.join(text))
            yield int(key),{
                'label' : data['label'],
                'COND': text,
                }

#############################################################################################################################
    def _info(self):
        self.path = self.init_cohort()
        self.size_cond, self.size_proc, self.size_meds, self.size_out, self.size_chart, self.size_lab, eth_vocab,gender_vocab,age_vocab,ins_vocab=vocab(self.config.name.replace(" ","_"),self.feat_cond,self.feat_proc,self.feat_out,self.feat_chart,self.feat_meds,self.feat_lab)
        if (self.encoding == 'concat' or self.encoding =='aggreg'):
            return self._info_encoded()
        
        elif self.encoding == 'tensor' :
            return self._info_deep()

        elif self.encoding == 'text' :
            return self._info_text()
            
        else:
            return self._info_raw()

    def _split_generators(self, dl_manager):
        data_dir = "./data/dict/"+self.config.name.replace(" ","_")
        if self.val_size > 0 :
            return [
                datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir+'/train_data.pkl'}),
                datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_dir+'/val_data.pkl'}),
                datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir+'/test_data.pkl'}),
            ]
        else : 
            return [
                datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir+'/train_data.pkl'}),
                datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir+'/test_data.pkl'}),
            ]
        
    def _generate_examples(self, filepath):
        if (self.encoding == 'concat' or self.encoding == 'aggreg'):
            yield from self._generate_examples_encoded(filepath)
        
        elif self.encoding == 'tensor' :
            yield from self._generate_examples_deep(filepath)

        elif self.encoding == 'text' :
            yield from self._generate_examples_text(filepath)
            
        else :
            yield from self._generate_examples_raw(filepath)