File size: 7,879 Bytes
8b8ed7d 2905dfe 8b8ed7d 2905dfe 8b8ed7d 2905dfe 8b8ed7d 08904b5 2905dfe dd1c84c 2905dfe f0830d9 dd1c84c 2905dfe 08904b5 2905dfe 08904b5 8b8ed7d 08904b5 8b8ed7d 54e004e a2455ce 08904b5 8b8ed7d 08904b5 8b8ed7d 2905dfe 8b8ed7d e23ced1 8b8ed7d 08904b5 8b8ed7d 2905dfe 8b8ed7d e23ced1 8b8ed7d 08904b5 8b8ed7d 2905dfe 8b8ed7d e23ced1 8b8ed7d 2905dfe 1410ca4 7e535bc f982edd 7f7a29a 3838254 1189a30 1f55b95 3838254 a456741 8b8ed7d 2905dfe daef63d 8b8ed7d 2905dfe 8b8ed7d 2905dfe 8a08aed a456741 7e535bc eb8a83e 4ad564e a456741 0767865 1f55b95 3838254 1410ca4 46b051d 1410ca4 8a08aed 1410ca4 7e535bc 3838254 a456741 1410ca4 8a08aed 1189a30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import csv
import json
import os
import pandas as pd
import datasets
import pickle
#import cohort
_DESCRIPTION = """\
Dataset for mimic4 data, by default for the Mortality task.
Available tasks are: Mortality, Length of Stay, Readmission, Phenotype.
The data is extracted from the mimic4 database using this pipeline: 'https://github.com/healthylaife/MIMIC-IV-Data-Pipeline/tree/main'
mimic path should have this form :
"""
_HOMEPAGE = "https://huggingface.co/datasets/thbndi/Mimic4Dataset"
_CITATION = "https://proceedings.mlr.press/v193/gupta22a.html"
_GITHUB = "https://github.com/healthylaife/MIMIC-IV-Data-Pipeline/tree/main"
class Mimic4DatasetConfig(datasets.BuilderConfig):
"""BuilderConfig for Mimic4Dataset."""
def __init__(
self,
mimic_path,
#config,
**kwargs,
):
super().__init__(**kwargs)
self.mimic_path =mimic_path
#self.config = config
#cohort.task_cohort(self.task,self.mimic_path)
class Mimic4Dataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
Mimic4DatasetConfig(
name="Phenotype",
version=VERSION,
data_dir=os.path.abspath("./data/dict/cohort_icu_readmission_30_I50"),
description="Dataset for mimic4 Phenotype task",
mimic_path = None
),
Mimic4DatasetConfig(
name="Readmission",
version=VERSION,
data_dir=os.path.abspath("./data/dict"),
description="Dataset for mimic4 Readmission task",
mimic_path = None
),
Mimic4DatasetConfig(
name="Length of Stay",
version=VERSION,
data_dir=os.path.abspath("./data/dict"),
description="Dataset for mimic4 Length of Stay task",
mimic_path = None
),
Mimic4DatasetConfig(
name="Mortality",
version=VERSION,
data_dir=os.path.abspath("./data/dict"),
description="Dataset for mimic4 Mortality task",
mimic_path = None
),
]
DEFAULT_CONFIG_NAME = "Mortality"
def _info(self):
features = datasets.Features(
{
"gender": datasets.Value("string"),
"ethnicity": datasets.Value("string"),
"age": datasets.Value("int32"),
"COND": datasets.Sequence(datasets.Value("string")),
"MEDS": {
"signal": datasets.Sequence(
{
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Value("float32"))
}
),
"rate": datasets.Sequence(
{
"id": datasets.Value("int32"),
"value": datasets.Sequence(datasets.Value("float32"))
}
),
"amount": datasets.Sequence(
{
"id": datasets.Value("int32"),
"value": datasets.Sequence(datasets.Value("float32"))
}
)
},
"PROC": {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
"CHART":
{
"signal" : {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
"val" : {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
},
"OUT": {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
"label": datasets.ClassLabel(names=["0", "1"]),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = self.config.data_dir + "/dataDic"
#mimic=self.mimic_path
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir}),
]
def _generate_examples(self, filepath):
with open(filepath, 'rb') as fp:
dataDic = pickle.load(fp)
for hid, data in dataDic.items():
proc_features = data['Proc']
chart_features = data['Chart']
meds_features = data['Med']
out_features = data['Out']
cond_features = data['Cond']['fids']
eth= data['ethnicity']
age = data['age']
gender = data['gender']
label = data['label']
items = list(proc_features.keys())
values =[proc_features[i] for i in items ]
procs = {"id" : items,
"value": values}
items_outs = list(out_features.keys())
values_outs =[out_features[i] for i in items_outs ]
outs = {"id" : items_outs,
"value": values_outs}
#chart signal
items_chart_sig = list(chart_features['signal'].keys())
values_chart_sig =[chart_features['signal'][i] for i in items_chart_sig ]
chart_sig = {"id" : items_chart_sig,
"value": values_chart_sig}
#chart val
items_chart_val = list(chart_features['val'].keys())
values_chart_val =[chart_features['val'][i] for i in items_chart_val ]
chart_val = {"id" : items_chart_val,
"value": values_chart_val}
charts = {"signal" : chart_sig,
"val" : chart_val}
#meds signal
items_meds_sig = list(meds_features['signal'].keys())
values_meds_sig =[meds_features['signal'][i] for i in items_meds_sig ]
meds_sig = {"id" : items_meds_sig,
"value": values_meds_sig}
#meds rate
items_meds_rate = list(meds_features['rate'].keys())
values_meds_rate =[meds_features['rate'][i] for i in items_meds_rate ]
meds_rate = {"id" : items_meds_rate,
"value": values_meds_rate}
#meds amount
items_meds_amount = list(meds_features['amount'].keys())
values_meds_amount =[meds_features['amount'][i] for i in items_meds_amount ]
meds_amount = {"id" : items_meds_amount,
"value": values_meds_amount}
meds = {"signal" : meds_sig,
"rate" : meds_rate,
"amount" : meds_amount}
yield int(hid), {
"label" : label,
"gender" : gender,
"ethnicity" : eth,
"age" : age,
"COND" : cond_features,
"PROC" : procs,
"CHART" : charts,
"OUT" : outs,
"MEDS" : meds
}
|