Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
French
Size:
100K - 1M
License:
Convert dataset to Parquet
#3
by
albertvillanova
HF staff
- opened
- README.md +16 -6
- allocine.py +0 -106
- allocine/test-00000-of-00001.parquet +3 -0
- allocine/train-00000-of-00001.parquet +3 -0
- allocine/validation-00000-of-00001.parquet +3 -0
- dataset_infos.json +0 -1
README.md
CHANGED
@@ -20,6 +20,7 @@ task_ids:
|
|
20 |
paperswithcode_id: allocine
|
21 |
pretty_name: Allociné
|
22 |
dataset_info:
|
|
|
23 |
features:
|
24 |
- name: review
|
25 |
dtype: string
|
@@ -29,19 +30,28 @@ dataset_info:
|
|
29 |
names:
|
30 |
'0': neg
|
31 |
'1': pos
|
32 |
-
config_name: allocine
|
33 |
splits:
|
34 |
- name: train
|
35 |
-
num_bytes:
|
36 |
num_examples: 160000
|
37 |
- name: validation
|
38 |
-
num_bytes:
|
39 |
num_examples: 20000
|
40 |
- name: test
|
41 |
-
num_bytes:
|
42 |
num_examples: 20000
|
43 |
-
download_size:
|
44 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
train-eval-index:
|
46 |
- config: allocine
|
47 |
task: text-classification
|
|
|
20 |
paperswithcode_id: allocine
|
21 |
pretty_name: Allociné
|
22 |
dataset_info:
|
23 |
+
config_name: allocine
|
24 |
features:
|
25 |
- name: review
|
26 |
dtype: string
|
|
|
30 |
names:
|
31 |
'0': neg
|
32 |
'1': pos
|
|
|
33 |
splits:
|
34 |
- name: train
|
35 |
+
num_bytes: 91330632
|
36 |
num_examples: 160000
|
37 |
- name: validation
|
38 |
+
num_bytes: 11546242
|
39 |
num_examples: 20000
|
40 |
- name: test
|
41 |
+
num_bytes: 11547689
|
42 |
num_examples: 20000
|
43 |
+
download_size: 75125954
|
44 |
+
dataset_size: 114424563
|
45 |
+
configs:
|
46 |
+
- config_name: allocine
|
47 |
+
data_files:
|
48 |
+
- split: train
|
49 |
+
path: allocine/train-*
|
50 |
+
- split: validation
|
51 |
+
path: allocine/validation-*
|
52 |
+
- split: test
|
53 |
+
path: allocine/test-*
|
54 |
+
default: true
|
55 |
train-eval-index:
|
56 |
- config: allocine
|
57 |
task: text-classification
|
allocine.py
DELETED
@@ -1,106 +0,0 @@
|
|
1 |
-
"""Allocine Dataset: A Large-Scale French Movie Reviews Dataset."""
|
2 |
-
|
3 |
-
|
4 |
-
import json
|
5 |
-
|
6 |
-
import datasets
|
7 |
-
from datasets.tasks import TextClassification
|
8 |
-
|
9 |
-
|
10 |
-
_CITATION = """\
|
11 |
-
@misc{blard2019allocine,
|
12 |
-
author = {Blard, Theophile},
|
13 |
-
title = {french-sentiment-analysis-with-bert},
|
14 |
-
year = {2020},
|
15 |
-
publisher = {GitHub},
|
16 |
-
journal = {GitHub repository},
|
17 |
-
howpublished={\\url{https://github.com/TheophileBlard/french-sentiment-analysis-with-bert}},
|
18 |
-
}
|
19 |
-
"""
|
20 |
-
|
21 |
-
_DESCRIPTION = """\
|
22 |
-
Allocine Dataset: A Large-Scale French Movie Reviews Dataset.
|
23 |
-
This is a dataset for binary sentiment classification, made of user reviews scraped from Allocine.fr.
|
24 |
-
It contains 100k positive and 100k negative reviews divided into 3 balanced splits: train (160k reviews), val (20k) and test (20k).
|
25 |
-
"""
|
26 |
-
|
27 |
-
|
28 |
-
class AllocineConfig(datasets.BuilderConfig):
|
29 |
-
"""BuilderConfig for Allocine."""
|
30 |
-
|
31 |
-
def __init__(self, **kwargs):
|
32 |
-
"""BuilderConfig for Allocine.
|
33 |
-
|
34 |
-
Args:
|
35 |
-
**kwargs: keyword arguments forwarded to super.
|
36 |
-
"""
|
37 |
-
super(AllocineConfig, self).__init__(**kwargs)
|
38 |
-
|
39 |
-
|
40 |
-
class AllocineDataset(datasets.GeneratorBasedBuilder):
|
41 |
-
"""Allocine Dataset: A Large-Scale French Movie Reviews Dataset."""
|
42 |
-
|
43 |
-
_DOWNLOAD_URL = "https://github.com/TheophileBlard/french-sentiment-analysis-with-bert/raw/master/allocine_dataset/data.tar.bz2"
|
44 |
-
_TRAIN_FILE = "train.jsonl"
|
45 |
-
_VAL_FILE = "val.jsonl"
|
46 |
-
_TEST_FILE = "test.jsonl"
|
47 |
-
|
48 |
-
BUILDER_CONFIGS = [
|
49 |
-
AllocineConfig(
|
50 |
-
name="allocine",
|
51 |
-
version=datasets.Version("1.0.0"),
|
52 |
-
description="Allocine Dataset: A Large-Scale French Movie Reviews Dataset",
|
53 |
-
),
|
54 |
-
]
|
55 |
-
|
56 |
-
def _info(self):
|
57 |
-
return datasets.DatasetInfo(
|
58 |
-
description=_DESCRIPTION,
|
59 |
-
features=datasets.Features(
|
60 |
-
{
|
61 |
-
"review": datasets.Value("string"),
|
62 |
-
"label": datasets.features.ClassLabel(names=["neg", "pos"]),
|
63 |
-
}
|
64 |
-
),
|
65 |
-
supervised_keys=None,
|
66 |
-
homepage="https://github.com/TheophileBlard/french-sentiment-analysis-with-bert",
|
67 |
-
citation=_CITATION,
|
68 |
-
task_templates=[TextClassification(text_column="review", label_column="label")],
|
69 |
-
)
|
70 |
-
|
71 |
-
def _split_generators(self, dl_manager):
|
72 |
-
archive_path = dl_manager.download(self._DOWNLOAD_URL)
|
73 |
-
data_dir = "data"
|
74 |
-
return [
|
75 |
-
datasets.SplitGenerator(
|
76 |
-
name=datasets.Split.TRAIN,
|
77 |
-
gen_kwargs={
|
78 |
-
"filepath": f"{data_dir}/{self._TRAIN_FILE}",
|
79 |
-
"files": dl_manager.iter_archive(archive_path),
|
80 |
-
},
|
81 |
-
),
|
82 |
-
datasets.SplitGenerator(
|
83 |
-
name=datasets.Split.VALIDATION,
|
84 |
-
gen_kwargs={
|
85 |
-
"filepath": f"{data_dir}/{self._VAL_FILE}",
|
86 |
-
"files": dl_manager.iter_archive(archive_path),
|
87 |
-
},
|
88 |
-
),
|
89 |
-
datasets.SplitGenerator(
|
90 |
-
name=datasets.Split.TEST,
|
91 |
-
gen_kwargs={
|
92 |
-
"filepath": f"{data_dir}/{self._TEST_FILE}",
|
93 |
-
"files": dl_manager.iter_archive(archive_path),
|
94 |
-
},
|
95 |
-
),
|
96 |
-
]
|
97 |
-
|
98 |
-
def _generate_examples(self, filepath, files):
|
99 |
-
"""Generate Allocine examples."""
|
100 |
-
for path, file in files:
|
101 |
-
if path == filepath:
|
102 |
-
for id_, row in enumerate(file):
|
103 |
-
data = json.loads(row.decode("utf-8"))
|
104 |
-
review = data["review"]
|
105 |
-
label = "neg" if data["polarity"] == 0 else "pos"
|
106 |
-
yield id_, {"review": review, "label": label}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
allocine/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e313c31e2db65eae40072f525eb0bc3567817baad70a85f798836b1e5be5a88
|
3 |
+
size 7580549
|
allocine/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5cdabde7b62d2d56a2bc24e790cb9697057645103b607c281d82092bc5d53307
|
3 |
+
size 59970147
|
allocine/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2a25489c7f923475a11756071acc20df1a967b58042ca853698800164e731aa
|
3 |
+
size 7575258
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"allocine": {"description": " Allocine Dataset: A Large-Scale French Movie Reviews Dataset.\n This is a dataset for binary sentiment classification, made of user reviews scraped from Allocine.fr.\n It contains 100k positive and 100k negative reviews divided into 3 balanced splits: train (160k reviews), val (20k) and test (20k).\n", "citation": "@misc{blard2019allocine,\n author = {Blard, Theophile},\n title = {french-sentiment-analysis-with-bert},\n year = {2020},\n publisher = {GitHub},\n journal = {GitHub repository},\n howpublished={\\url{https://github.com/TheophileBlard/french-sentiment-analysis-with-bert}},\n}\n", "homepage": "https://github.com/TheophileBlard/french-sentiment-analysis-with-bert", "license": "", "features": {"review": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["neg", "pos"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "text-classification", "text_column": "review", "label_column": "label", "labels": ["neg", "pos"]}], "builder_name": "allocine_dataset", "config_name": "allocine", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 91330696, "num_examples": 160000, "dataset_name": "allocine_dataset"}, "validation": {"name": "validation", "num_bytes": 11546250, "num_examples": 20000, "dataset_name": "allocine_dataset"}, "test": {"name": "test", "num_bytes": 11547697, "num_examples": 20000, "dataset_name": "allocine_dataset"}}, "download_checksums": {"https://github.com/TheophileBlard/french-sentiment-analysis-with-bert/raw/master/allocine_dataset/data.tar.bz2": {"num_bytes": 66625305, "checksum": "8c49a8cac783da201697ed1a91b36d2f6618222b3b7ea1c2996f2a3fbc37dfb4"}}, "download_size": 66625305, "post_processing_size": null, "dataset_size": 114424643, "size_in_bytes": 181049948}}
|
|
|
|