File size: 6,193 Bytes
dd5f88d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pip install pillow datasets pandas pypng uuid\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Preproccessing"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import uuid\n",
    "import shutil\n",
    "\n",
    "def rename_and_move_images(source_dir, target_dir):\n",
    "    # Create the target directory if it doesn't exist\n",
    "    os.makedirs(target_dir, exist_ok=True)\n",
    "\n",
    "    # List of common image file extensions\n",
    "    image_extensions = ('.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff')\n",
    "\n",
    "    # Walk through the source directory and its subdirectories\n",
    "    for root, dirs, files in os.walk(source_dir):\n",
    "        for file in files:\n",
    "            # Check if the file has an image extension\n",
    "            if file.lower().endswith(image_extensions):\n",
    "                # Generate a new filename with UUID\n",
    "                new_filename = str(uuid.uuid4()) + os.path.splitext(file)[1]\n",
    "                \n",
    "                # Construct full file paths\n",
    "                old_path = os.path.join(root, file)\n",
    "                new_path = os.path.join(target_dir, new_filename)\n",
    "                \n",
    "                # Move and rename the file\n",
    "                shutil.move(old_path, new_path)\n",
    "                print(f\"Moved and renamed: {old_path} -> {new_path}\")\n",
    "\n",
    "# Usage\n",
    "source_directory = \"images\"\n",
    "target_directory = \"train\"\n",
    "\n",
    "rename_and_move_images(source_directory, target_directory)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Extract the Metadata"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import json\n",
    "import png\n",
    "import pandas as pd\n",
    "\n",
    "# Directory containing images\n",
    "image_dir = 'train'\n",
    "metadata_list = []\n",
    "\n",
    "# Function to extract the JSON data from the tEXt chunk in PNG images\n",
    "def extract_metadata_from_png(image_path):\n",
    "    with open(image_path, 'rb') as f:\n",
    "        reader = png.Reader(file=f)\n",
    "        chunks = reader.chunks()\n",
    "        for chunk_type, chunk_data in chunks:\n",
    "            if chunk_type == b'tEXt':\n",
    "                # Convert bytes to string\n",
    "                chunk_text = chunk_data.decode('latin1')\n",
    "                if 'prompt' in chunk_text:\n",
    "                    try:\n",
    "                        # Extract JSON string after \"prompt\\0\"\n",
    "                        json_str = chunk_text.split('prompt\\0', 1)[1]\n",
    "                        json_data = json.loads(json_str)\n",
    "                        inputs = json_data.get('3', {}).get('inputs', {})\n",
    "                        seed = inputs.get('seed', 'N/A')\n",
    "                        positive_prompt = json_data.get('6', {}).get('inputs', {}).get('text', 'N/A')\n",
    "                        negative_prompt = json_data.get('7', {}).get('inputs', {}).get('text', 'N/A')\n",
    "                        model = json_data.get('4', {}).get('inputs', {}).get('ckpt_name', 'N/A')\n",
    "                        steps = inputs.get('steps', 'N/A')\n",
    "                        cfg = inputs.get('cfg', 'N/A')\n",
    "                        sampler_name = inputs.get('sampler_name', 'N/A')\n",
    "                        scheduler = inputs.get('scheduler', 'N/A')\n",
    "                        denoise = inputs.get('denoise', 'N/A')\n",
    "                        return {\n",
    "                            'seed': seed,\n",
    "                            'positive_prompt': positive_prompt,\n",
    "                            'negative_prompt': negative_prompt,\n",
    "                            'model': model,\n",
    "                            'steps': steps,\n",
    "                            'cfg': cfg,\n",
    "                            'sampler_name': sampler_name,\n",
    "                            'scheduler': scheduler,\n",
    "                            'denoise': denoise\n",
    "                        }\n",
    "                    except json.JSONDecodeError:\n",
    "                        pass\n",
    "    return {}\n",
    "\n",
    "# Loop through all images in the directory\n",
    "for file_name in os.listdir(image_dir):\n",
    "    if file_name.endswith('.png'):\n",
    "        image_path = os.path.join(image_dir, file_name)\n",
    "        metadata = extract_metadata_from_png(image_path)\n",
    "        metadata['file_name'] = file_name\n",
    "        metadata_list.append(metadata)\n",
    "\n",
    "# Convert metadata to DataFrame\n",
    "metadata_df = pd.DataFrame(metadata_list)\n",
    "\n",
    "# Ensure 'file_name' is the first column\n",
    "columns_order = ['file_name', 'seed', 'positive_prompt', 'negative_prompt', 'model', 'steps', 'cfg', 'sampler_name', 'scheduler', 'denoise']\n",
    "metadata_df = metadata_df[columns_order]\n",
    "\n",
    "# Save metadata to a CSV file\n",
    "metadata_csv_path = 'train/metadata.csv'\n",
    "metadata_df.to_csv(metadata_csv_path, index=False)\n",
    "\n",
    "print(\"Metadata extraction complete. Metadata saved to:\", metadata_csv_path)\n",
    "\n",
    "\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}