Jordan Legg
commited on
Commit
·
dd5f88d
1
Parent(s):
8a9855e
added dataset
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- create-video.ipynb +274 -0
- image_metadata_extraction.ipynb +173 -0
- train/02093b53-2662-47e3-81e9-954b37b7fc46.png +3 -0
- train/02c07a38-f236-437f-b5bb-c212e5c0a5a1.png +3 -0
- train/0339b37f-3bd1-4da2-8648-7db6e7db183d.png +3 -0
- train/033c18e7-f6a8-4498-af26-48a08374e837.png +3 -0
- train/039270f2-88e3-44e5-8374-d4c3646d327e.png +3 -0
- train/0447db9b-47d6-406e-bdb2-b679a2a0ce09.png +3 -0
- train/0474342f-d69a-46fa-adcd-8e131fe87109.png +3 -0
- train/0480c58d-b091-40b1-8d8a-4b36aca5a3e3.png +3 -0
- train/04c29061-946c-45d3-8a8a-716cb6d1a546.png +3 -0
- train/057d897b-48e0-4e64-b596-5b9d5891645e.png +3 -0
- train/059a3ab3-9bf8-4fb3-a67d-a4f7e49490c5.png +3 -0
- train/066753d2-02d7-4a45-931a-f28466d25153.png +3 -0
- train/06741a66-4213-4f50-bf28-e5bba80a530e.png +3 -0
- train/06b36c51-f062-4451-b862-3ed00fba22c9.png +3 -0
- train/07973684-a240-4b42-9527-1091724c2dbd.png +3 -0
- train/07f3d828-b371-4d1f-a917-3bbfd3d2bd63.png +3 -0
- train/0827c815-aecc-4ded-ba64-15cc1fad18fe.png +3 -0
- train/08305fb3-9b08-4255-b0af-49ff0b7ba05e.png +3 -0
- train/083c7a17-d890-4b74-94cb-68dff883afaf.png +3 -0
- train/0891b834-5f9f-4320-9d4c-7c40e3321398.png +3 -0
- train/0947d257-04f1-4039-937d-0cb6289eaeb2.png +3 -0
- train/097c9da6-0eb1-4c03-8873-82faa1e8c996.png +3 -0
- train/09e3d405-12e3-4618-a77a-13be8eb66af3.png +3 -0
- train/09e5f384-1a1d-4adf-9fb1-7d8dc13e4777.png +3 -0
- train/0a74339c-5547-4aa7-a2bb-494f14f8cb7d.png +3 -0
- train/0b263a7d-fad8-4acd-b8f5-c17236cc0573.png +3 -0
- train/0bf053d3-770e-49c0-9b3b-560799153013.png +3 -0
- train/0cc5ccfb-dfd4-420f-b9b4-f6ec6667c4f5.png +3 -0
- train/0d3f9c1d-2b79-4d99-9c9b-760066956b0f.png +3 -0
- train/0da476ce-7ac6-446a-ae45-8e5feec23f4d.png +3 -0
- train/0dbbc535-334f-438e-9823-56af6641856b.png +3 -0
- train/0dd3c67f-6c1c-4125-b008-bdc6979dd026.png +3 -0
- train/0ecbf570-7b7a-4b27-b6ef-fdd51f2b86d0.png +3 -0
- train/0eef49cf-aff3-4ac1-b3bf-dff7120af16c.png +3 -0
- train/0ef5bf53-5b79-4790-8887-93556bab0001.png +3 -0
- train/0f152466-ce71-44df-b19f-43cc4e5a588a.png +3 -0
- train/0f9212ad-11ff-4603-b167-11f3a47e9b1f.png +3 -0
- train/0fe7153b-db42-4802-8554-205671b2c77d.png +3 -0
- train/10963988-1ad4-4caa-b747-0aeb44e5120d.png +3 -0
- train/10de3b70-28fe-4f85-9965-d1a0485cadd7.png +3 -0
- train/11119176-b46a-4607-9930-36ffc10cc639.png +3 -0
- train/1136fb0d-457d-4483-bbde-12cd18594b84.png +3 -0
- train/116355f4-d18f-4b43-bb31-6989c9575ae1.png +3 -0
- train/12199e7e-366e-4029-87e8-f5c8dc1f2057.png +3 -0
- train/121bcfa3-26ff-4659-a64e-3113f7c95855.png +3 -0
- train/122430be-20ab-47c8-adaf-23d6ba5091fc.png +3 -0
- train/12b3ea2c-863e-46c7-9cc0-ebc77e6e9757.png +3 -0
- train/13b079f6-1b8a-4fc9-91f3-b5728dcf9c75.png +3 -0
create-video.ipynb
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Create Video!"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": null,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"pip install opencv-python-headless # If you do not need GUI features\n"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "markdown",
|
21 |
+
"metadata": {},
|
22 |
+
"source": [
|
23 |
+
"## Creating the demo\n"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": null,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"import os\n",
|
33 |
+
"import subprocess\n",
|
34 |
+
"import logging\n",
|
35 |
+
"from glob import glob\n",
|
36 |
+
"import re\n",
|
37 |
+
"\n",
|
38 |
+
"# Configure logging\n",
|
39 |
+
"logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')\n",
|
40 |
+
"logger = logging.getLogger(__name__)\n",
|
41 |
+
"\n",
|
42 |
+
"def create_near_lossless_h265_video(input_folder, output_file, fps=30, frames_per_image=3, crf=10):\n",
|
43 |
+
" if not os.path.exists(input_folder):\n",
|
44 |
+
" logger.error(f\"Input folder '{input_folder}' does not exist.\")\n",
|
45 |
+
" return\n",
|
46 |
+
"\n",
|
47 |
+
" png_files = sorted(glob(os.path.join(input_folder, '*.png')))\n",
|
48 |
+
" if not png_files:\n",
|
49 |
+
" logger.error(f\"No PNG files found in {input_folder}\")\n",
|
50 |
+
" return\n",
|
51 |
+
"\n",
|
52 |
+
" num_images = len(png_files)\n",
|
53 |
+
" logger.info(f\"Found {num_images} PNG files.\")\n",
|
54 |
+
"\n",
|
55 |
+
" # Calculate expected duration\n",
|
56 |
+
" expected_duration = (num_images * frames_per_image) / fps\n",
|
57 |
+
" logger.info(f\"Expected duration: {expected_duration:.2f} seconds\")\n",
|
58 |
+
"\n",
|
59 |
+
" # FFmpeg command for near-lossless 10-bit H.265 encoding\n",
|
60 |
+
" ffmpeg_command = [\n",
|
61 |
+
" 'ffmpeg',\n",
|
62 |
+
" '-framerate', f'{1/(frames_per_image/fps)}', # Input framerate\n",
|
63 |
+
" '-i', os.path.join(input_folder, '%*.png'), # Input pattern for all PNG files\n",
|
64 |
+
" '-fps_mode', 'vfr',\n",
|
65 |
+
" '-pix_fmt', 'yuv420p10le', # 10-bit pixel format\n",
|
66 |
+
" '-c:v', 'libx265', # Use libx265 encoder\n",
|
67 |
+
" '-preset', 'slow', # Slowest preset for best compression efficiency\n",
|
68 |
+
" '-crf', str(crf), # Constant Rate Factor (0-51, lower is higher quality)\n",
|
69 |
+
" '-profile:v', 'main10', # 10-bit profile\n",
|
70 |
+
" '-x265-params', f\"log-level=error:keyint={2*fps}:min-keyint={fps}:scenecut=0\", # Ensure consistent encoding\n",
|
71 |
+
" '-tag:v', 'hvc1',\n",
|
72 |
+
" '-y',\n",
|
73 |
+
" output_file\n",
|
74 |
+
" ]\n",
|
75 |
+
"\n",
|
76 |
+
" try:\n",
|
77 |
+
" logger.info(\"Starting near-lossless 10-bit video creation...\")\n",
|
78 |
+
" process = subprocess.Popen(ffmpeg_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)\n",
|
79 |
+
" \n",
|
80 |
+
" encoding_speed = None\n",
|
81 |
+
" \n",
|
82 |
+
" for line in process.stderr:\n",
|
83 |
+
" print(line, end='') # Print FFmpeg output in real-time\n",
|
84 |
+
" \n",
|
85 |
+
" speed_match = re.search(r'speed=\\s*([\\d.]+)x', line)\n",
|
86 |
+
" if speed_match:\n",
|
87 |
+
" encoding_speed = float(speed_match.group(1))\n",
|
88 |
+
" \n",
|
89 |
+
" process.wait()\n",
|
90 |
+
" \n",
|
91 |
+
" if encoding_speed:\n",
|
92 |
+
" logger.info(f\"Encoding speed: {encoding_speed:.2f}x\")\n",
|
93 |
+
" \n",
|
94 |
+
" if process.returncode == 0:\n",
|
95 |
+
" logger.info(f\"Video created successfully: {output_file}\")\n",
|
96 |
+
" \n",
|
97 |
+
" probe_command = ['ffprobe', '-v', 'error', '-show_entries', 'stream=codec_name,width,height,duration,bit_rate,profile', '-of', 'default=noprint_wrappers=1', output_file]\n",
|
98 |
+
" probe_result = subprocess.run(probe_command, capture_output=True, text=True)\n",
|
99 |
+
" logger.info(f\"Video properties:\\n{probe_result.stdout}\")\n",
|
100 |
+
" \n",
|
101 |
+
" duration_command = ['ffprobe', '-v', 'error', '-show_entries', 'format=duration', '-of', 'default=noprint_wrappers=1:nokey=1', output_file]\n",
|
102 |
+
" duration_result = subprocess.run(duration_command, capture_output=True, text=True)\n",
|
103 |
+
" actual_duration = float(duration_result.stdout.strip())\n",
|
104 |
+
" logger.info(f\"Actual video duration: {actual_duration:.2f} seconds\")\n",
|
105 |
+
" if abs(actual_duration - expected_duration) > 1:\n",
|
106 |
+
" logger.warning(f\"Video duration mismatch. Expected: {expected_duration:.2f}, Actual: {actual_duration:.2f}\")\n",
|
107 |
+
" else:\n",
|
108 |
+
" logger.info(\"Video duration check passed.\")\n",
|
109 |
+
" else:\n",
|
110 |
+
" logger.error(f\"Error during video creation. FFmpeg returned code {process.returncode}\")\n",
|
111 |
+
"\n",
|
112 |
+
" except subprocess.CalledProcessError as e:\n",
|
113 |
+
" logger.error(f\"Error during video creation: {e}\")\n",
|
114 |
+
" logger.error(f\"FFmpeg error output:\\n{e.stderr}\")\n",
|
115 |
+
"\n",
|
116 |
+
"if __name__ == \"__main__\":\n",
|
117 |
+
" input_folder = 'train'\n",
|
118 |
+
" output_file = 'near_lossless_output.mp4'\n",
|
119 |
+
" fps = 30\n",
|
120 |
+
" frames_per_image = 3\n",
|
121 |
+
" crf = 18 # Very low CRF for near-lossless quality (0 is lossless, but often overkill)\n",
|
122 |
+
"\n",
|
123 |
+
" create_near_lossless_h265_video(input_folder, output_file, fps, frames_per_image, crf)\n"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "markdown",
|
128 |
+
"metadata": {},
|
129 |
+
"source": [
|
130 |
+
"## Transfer File"
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "code",
|
135 |
+
"execution_count": null,
|
136 |
+
"metadata": {},
|
137 |
+
"outputs": [],
|
138 |
+
"source": [
|
139 |
+
"import os\n",
|
140 |
+
"import subprocess\n",
|
141 |
+
"import logging\n",
|
142 |
+
"from glob import glob\n",
|
143 |
+
"import re\n",
|
144 |
+
"\n",
|
145 |
+
"# Configure logging\n",
|
146 |
+
"logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')\n",
|
147 |
+
"logger = logging.getLogger(__name__)\n",
|
148 |
+
"\n",
|
149 |
+
"def create_high_quality_video(input_folder, output_file, fps=60, frames_per_image=3, codec='ffv1'):\n",
|
150 |
+
" if not os.path.exists(input_folder):\n",
|
151 |
+
" logger.error(f\"Input folder '{input_folder}' does not exist.\")\n",
|
152 |
+
" return\n",
|
153 |
+
"\n",
|
154 |
+
" png_files = sorted(glob(os.path.join(input_folder, '*.png')))\n",
|
155 |
+
" if not png_files:\n",
|
156 |
+
" logger.error(f\"No PNG files found in {input_folder}\")\n",
|
157 |
+
" return\n",
|
158 |
+
"\n",
|
159 |
+
" num_images = len(png_files)\n",
|
160 |
+
" logger.info(f\"Found {num_images} PNG files.\")\n",
|
161 |
+
"\n",
|
162 |
+
" # Calculate expected duration\n",
|
163 |
+
" expected_duration = (num_images * frames_per_image) / fps\n",
|
164 |
+
" logger.info(f\"Expected duration: {expected_duration:.2f} seconds\")\n",
|
165 |
+
"\n",
|
166 |
+
" # Base FFmpeg command\n",
|
167 |
+
" ffmpeg_command = [\n",
|
168 |
+
" 'ffmpeg',\n",
|
169 |
+
" '-framerate', f'{1/(frames_per_image/fps)}', # Input framerate\n",
|
170 |
+
" '-i', os.path.join(input_folder, '%*.png'), # Input pattern for all PNG files\n",
|
171 |
+
" '-fps_mode', 'vfr',\n",
|
172 |
+
" ]\n",
|
173 |
+
"\n",
|
174 |
+
" # Codec-specific settings\n",
|
175 |
+
" if codec == 'ffv1':\n",
|
176 |
+
" output_file = output_file.rsplit('.', 1)[0] + '.mkv' # FFV1 is typically used with MKV container\n",
|
177 |
+
" ffmpeg_command.extend([\n",
|
178 |
+
" '-c:v', 'ffv1',\n",
|
179 |
+
" '-level', '3',\n",
|
180 |
+
" '-coder', '1',\n",
|
181 |
+
" '-context', '1',\n",
|
182 |
+
" '-g', '1',\n",
|
183 |
+
" '-slices', '24',\n",
|
184 |
+
" '-slicecrc', '1'\n",
|
185 |
+
" ])\n",
|
186 |
+
" logger.info(\"Using FFV1 codec (lossless)\")\n",
|
187 |
+
" elif codec == 'prores':\n",
|
188 |
+
" output_file = output_file.rsplit('.', 1)[0] + '.mov' # ProRes is typically used with MOV container\n",
|
189 |
+
" ffmpeg_command.extend([\n",
|
190 |
+
" '-c:v', 'prores_ks',\n",
|
191 |
+
" '-profile:v', 'proxy', # Use ProRes 422 Proxy profile\n",
|
192 |
+
" '-qscale:v', '11' # Adjust quality scale; higher values mean lower quality. 11 is typical for proxy quality.\n",
|
193 |
+
"])\n",
|
194 |
+
"\n",
|
195 |
+
" logger.info(\"Using ProRes codec (near-lossless)\")\n",
|
196 |
+
" else:\n",
|
197 |
+
" logger.error(f\"Unsupported codec: {codec}\")\n",
|
198 |
+
" return\n",
|
199 |
+
"\n",
|
200 |
+
" ffmpeg_command.extend(['-y', output_file])\n",
|
201 |
+
"\n",
|
202 |
+
" try:\n",
|
203 |
+
" logger.info(f\"Starting high-quality video creation with {codec} codec...\")\n",
|
204 |
+
" process = subprocess.Popen(ffmpeg_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)\n",
|
205 |
+
" \n",
|
206 |
+
" encoding_speed = None\n",
|
207 |
+
" \n",
|
208 |
+
" for line in process.stderr:\n",
|
209 |
+
" print(line, end='') # Print FFmpeg output in real-time\n",
|
210 |
+
" \n",
|
211 |
+
" speed_match = re.search(r'speed=\\s*([\\d.]+)x', line)\n",
|
212 |
+
" if speed_match:\n",
|
213 |
+
" encoding_speed = float(speed_match.group(1))\n",
|
214 |
+
" \n",
|
215 |
+
" process.wait()\n",
|
216 |
+
" \n",
|
217 |
+
" if encoding_speed:\n",
|
218 |
+
" logger.info(f\"Encoding speed: {encoding_speed:.4f}x\")\n",
|
219 |
+
" \n",
|
220 |
+
" if process.returncode == 0:\n",
|
221 |
+
" logger.info(f\"Video created successfully: {output_file}\")\n",
|
222 |
+
" \n",
|
223 |
+
" probe_command = ['ffprobe', '-v', 'error', '-show_entries', 'stream=codec_name,width,height,duration,bit_rate', '-of', 'default=noprint_wrappers=1', output_file]\n",
|
224 |
+
" probe_result = subprocess.run(probe_command, capture_output=True, text=True)\n",
|
225 |
+
" logger.info(f\"Video properties:\\n{probe_result.stdout}\")\n",
|
226 |
+
" \n",
|
227 |
+
" duration_command = ['ffprobe', '-v', 'error', '-show_entries', 'format=duration', '-of', 'default=noprint_wrappers=1:nokey=1', output_file]\n",
|
228 |
+
" duration_result = subprocess.run(duration_command, capture_output=True, text=True)\n",
|
229 |
+
" actual_duration = float(duration_result.stdout.strip())\n",
|
230 |
+
" logger.info(f\"Actual video duration: {actual_duration:.2f} seconds\")\n",
|
231 |
+
" if abs(actual_duration - expected_duration) > 1:\n",
|
232 |
+
" logger.warning(f\"Video duration mismatch. Expected: {expected_duration:.2f}, Actual: {actual_duration:.2f}\")\n",
|
233 |
+
" else:\n",
|
234 |
+
" logger.info(\"Video duration check passed.\")\n",
|
235 |
+
" else:\n",
|
236 |
+
" logger.error(f\"Error during video creation. FFmpeg returned code {process.returncode}\")\n",
|
237 |
+
"\n",
|
238 |
+
" except subprocess.CalledProcessError as e:\n",
|
239 |
+
" logger.error(f\"Error during video creation: {e}\")\n",
|
240 |
+
" logger.error(f\"FFmpeg error output:\\n{e.stderr}\")\n",
|
241 |
+
"\n",
|
242 |
+
"if __name__ == \"__main__\":\n",
|
243 |
+
" input_folder = 'train'\n",
|
244 |
+
" output_file = 'high_quality_output.mp4'\n",
|
245 |
+
" fps = 60\n",
|
246 |
+
" frames_per_image = 3\n",
|
247 |
+
" codec = 'prores' # Options: 'ffv1' (lossless) or 'prores' (near-lossless)\n",
|
248 |
+
"\n",
|
249 |
+
" create_high_quality_video(input_folder, output_file, fps, frames_per_image, codec)"
|
250 |
+
]
|
251 |
+
}
|
252 |
+
],
|
253 |
+
"metadata": {
|
254 |
+
"kernelspec": {
|
255 |
+
"display_name": "Python 3",
|
256 |
+
"language": "python",
|
257 |
+
"name": "python3"
|
258 |
+
},
|
259 |
+
"language_info": {
|
260 |
+
"codemirror_mode": {
|
261 |
+
"name": "ipython",
|
262 |
+
"version": 3
|
263 |
+
},
|
264 |
+
"file_extension": ".py",
|
265 |
+
"mimetype": "text/x-python",
|
266 |
+
"name": "python",
|
267 |
+
"nbconvert_exporter": "python",
|
268 |
+
"pygments_lexer": "ipython3",
|
269 |
+
"version": "3.10.14"
|
270 |
+
}
|
271 |
+
},
|
272 |
+
"nbformat": 4,
|
273 |
+
"nbformat_minor": 2
|
274 |
+
}
|
image_metadata_extraction.ipynb
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"Dependencies"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": null,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"pip install pillow datasets pandas pypng uuid\n"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "markdown",
|
21 |
+
"metadata": {},
|
22 |
+
"source": [
|
23 |
+
"Preproccessing"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": null,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"import os\n",
|
33 |
+
"import uuid\n",
|
34 |
+
"import shutil\n",
|
35 |
+
"\n",
|
36 |
+
"def rename_and_move_images(source_dir, target_dir):\n",
|
37 |
+
" # Create the target directory if it doesn't exist\n",
|
38 |
+
" os.makedirs(target_dir, exist_ok=True)\n",
|
39 |
+
"\n",
|
40 |
+
" # List of common image file extensions\n",
|
41 |
+
" image_extensions = ('.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff')\n",
|
42 |
+
"\n",
|
43 |
+
" # Walk through the source directory and its subdirectories\n",
|
44 |
+
" for root, dirs, files in os.walk(source_dir):\n",
|
45 |
+
" for file in files:\n",
|
46 |
+
" # Check if the file has an image extension\n",
|
47 |
+
" if file.lower().endswith(image_extensions):\n",
|
48 |
+
" # Generate a new filename with UUID\n",
|
49 |
+
" new_filename = str(uuid.uuid4()) + os.path.splitext(file)[1]\n",
|
50 |
+
" \n",
|
51 |
+
" # Construct full file paths\n",
|
52 |
+
" old_path = os.path.join(root, file)\n",
|
53 |
+
" new_path = os.path.join(target_dir, new_filename)\n",
|
54 |
+
" \n",
|
55 |
+
" # Move and rename the file\n",
|
56 |
+
" shutil.move(old_path, new_path)\n",
|
57 |
+
" print(f\"Moved and renamed: {old_path} -> {new_path}\")\n",
|
58 |
+
"\n",
|
59 |
+
"# Usage\n",
|
60 |
+
"source_directory = \"images\"\n",
|
61 |
+
"target_directory = \"train\"\n",
|
62 |
+
"\n",
|
63 |
+
"rename_and_move_images(source_directory, target_directory)"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "markdown",
|
68 |
+
"metadata": {},
|
69 |
+
"source": [
|
70 |
+
"Extract the Metadata"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": null,
|
76 |
+
"metadata": {},
|
77 |
+
"outputs": [],
|
78 |
+
"source": [
|
79 |
+
"import os\n",
|
80 |
+
"import json\n",
|
81 |
+
"import png\n",
|
82 |
+
"import pandas as pd\n",
|
83 |
+
"\n",
|
84 |
+
"# Directory containing images\n",
|
85 |
+
"image_dir = 'train'\n",
|
86 |
+
"metadata_list = []\n",
|
87 |
+
"\n",
|
88 |
+
"# Function to extract the JSON data from the tEXt chunk in PNG images\n",
|
89 |
+
"def extract_metadata_from_png(image_path):\n",
|
90 |
+
" with open(image_path, 'rb') as f:\n",
|
91 |
+
" reader = png.Reader(file=f)\n",
|
92 |
+
" chunks = reader.chunks()\n",
|
93 |
+
" for chunk_type, chunk_data in chunks:\n",
|
94 |
+
" if chunk_type == b'tEXt':\n",
|
95 |
+
" # Convert bytes to string\n",
|
96 |
+
" chunk_text = chunk_data.decode('latin1')\n",
|
97 |
+
" if 'prompt' in chunk_text:\n",
|
98 |
+
" try:\n",
|
99 |
+
" # Extract JSON string after \"prompt\\0\"\n",
|
100 |
+
" json_str = chunk_text.split('prompt\\0', 1)[1]\n",
|
101 |
+
" json_data = json.loads(json_str)\n",
|
102 |
+
" inputs = json_data.get('3', {}).get('inputs', {})\n",
|
103 |
+
" seed = inputs.get('seed', 'N/A')\n",
|
104 |
+
" positive_prompt = json_data.get('6', {}).get('inputs', {}).get('text', 'N/A')\n",
|
105 |
+
" negative_prompt = json_data.get('7', {}).get('inputs', {}).get('text', 'N/A')\n",
|
106 |
+
" model = json_data.get('4', {}).get('inputs', {}).get('ckpt_name', 'N/A')\n",
|
107 |
+
" steps = inputs.get('steps', 'N/A')\n",
|
108 |
+
" cfg = inputs.get('cfg', 'N/A')\n",
|
109 |
+
" sampler_name = inputs.get('sampler_name', 'N/A')\n",
|
110 |
+
" scheduler = inputs.get('scheduler', 'N/A')\n",
|
111 |
+
" denoise = inputs.get('denoise', 'N/A')\n",
|
112 |
+
" return {\n",
|
113 |
+
" 'seed': seed,\n",
|
114 |
+
" 'positive_prompt': positive_prompt,\n",
|
115 |
+
" 'negative_prompt': negative_prompt,\n",
|
116 |
+
" 'model': model,\n",
|
117 |
+
" 'steps': steps,\n",
|
118 |
+
" 'cfg': cfg,\n",
|
119 |
+
" 'sampler_name': sampler_name,\n",
|
120 |
+
" 'scheduler': scheduler,\n",
|
121 |
+
" 'denoise': denoise\n",
|
122 |
+
" }\n",
|
123 |
+
" except json.JSONDecodeError:\n",
|
124 |
+
" pass\n",
|
125 |
+
" return {}\n",
|
126 |
+
"\n",
|
127 |
+
"# Loop through all images in the directory\n",
|
128 |
+
"for file_name in os.listdir(image_dir):\n",
|
129 |
+
" if file_name.endswith('.png'):\n",
|
130 |
+
" image_path = os.path.join(image_dir, file_name)\n",
|
131 |
+
" metadata = extract_metadata_from_png(image_path)\n",
|
132 |
+
" metadata['file_name'] = file_name\n",
|
133 |
+
" metadata_list.append(metadata)\n",
|
134 |
+
"\n",
|
135 |
+
"# Convert metadata to DataFrame\n",
|
136 |
+
"metadata_df = pd.DataFrame(metadata_list)\n",
|
137 |
+
"\n",
|
138 |
+
"# Ensure 'file_name' is the first column\n",
|
139 |
+
"columns_order = ['file_name', 'seed', 'positive_prompt', 'negative_prompt', 'model', 'steps', 'cfg', 'sampler_name', 'scheduler', 'denoise']\n",
|
140 |
+
"metadata_df = metadata_df[columns_order]\n",
|
141 |
+
"\n",
|
142 |
+
"# Save metadata to a CSV file\n",
|
143 |
+
"metadata_csv_path = 'train/metadata.csv'\n",
|
144 |
+
"metadata_df.to_csv(metadata_csv_path, index=False)\n",
|
145 |
+
"\n",
|
146 |
+
"print(\"Metadata extraction complete. Metadata saved to:\", metadata_csv_path)\n",
|
147 |
+
"\n",
|
148 |
+
"\n"
|
149 |
+
]
|
150 |
+
}
|
151 |
+
],
|
152 |
+
"metadata": {
|
153 |
+
"kernelspec": {
|
154 |
+
"display_name": "Python 3",
|
155 |
+
"language": "python",
|
156 |
+
"name": "python3"
|
157 |
+
},
|
158 |
+
"language_info": {
|
159 |
+
"codemirror_mode": {
|
160 |
+
"name": "ipython",
|
161 |
+
"version": 3
|
162 |
+
},
|
163 |
+
"file_extension": ".py",
|
164 |
+
"mimetype": "text/x-python",
|
165 |
+
"name": "python",
|
166 |
+
"nbconvert_exporter": "python",
|
167 |
+
"pygments_lexer": "ipython3",
|
168 |
+
"version": "3.10.14"
|
169 |
+
}
|
170 |
+
},
|
171 |
+
"nbformat": 4,
|
172 |
+
"nbformat_minor": 2
|
173 |
+
}
|
train/02093b53-2662-47e3-81e9-954b37b7fc46.png
ADDED
Git LFS Details
|
train/02c07a38-f236-437f-b5bb-c212e5c0a5a1.png
ADDED
Git LFS Details
|
train/0339b37f-3bd1-4da2-8648-7db6e7db183d.png
ADDED
Git LFS Details
|
train/033c18e7-f6a8-4498-af26-48a08374e837.png
ADDED
Git LFS Details
|
train/039270f2-88e3-44e5-8374-d4c3646d327e.png
ADDED
Git LFS Details
|
train/0447db9b-47d6-406e-bdb2-b679a2a0ce09.png
ADDED
Git LFS Details
|
train/0474342f-d69a-46fa-adcd-8e131fe87109.png
ADDED
Git LFS Details
|
train/0480c58d-b091-40b1-8d8a-4b36aca5a3e3.png
ADDED
Git LFS Details
|
train/04c29061-946c-45d3-8a8a-716cb6d1a546.png
ADDED
Git LFS Details
|
train/057d897b-48e0-4e64-b596-5b9d5891645e.png
ADDED
Git LFS Details
|
train/059a3ab3-9bf8-4fb3-a67d-a4f7e49490c5.png
ADDED
Git LFS Details
|
train/066753d2-02d7-4a45-931a-f28466d25153.png
ADDED
Git LFS Details
|
train/06741a66-4213-4f50-bf28-e5bba80a530e.png
ADDED
Git LFS Details
|
train/06b36c51-f062-4451-b862-3ed00fba22c9.png
ADDED
Git LFS Details
|
train/07973684-a240-4b42-9527-1091724c2dbd.png
ADDED
Git LFS Details
|
train/07f3d828-b371-4d1f-a917-3bbfd3d2bd63.png
ADDED
Git LFS Details
|
train/0827c815-aecc-4ded-ba64-15cc1fad18fe.png
ADDED
Git LFS Details
|
train/08305fb3-9b08-4255-b0af-49ff0b7ba05e.png
ADDED
Git LFS Details
|
train/083c7a17-d890-4b74-94cb-68dff883afaf.png
ADDED
Git LFS Details
|
train/0891b834-5f9f-4320-9d4c-7c40e3321398.png
ADDED
Git LFS Details
|
train/0947d257-04f1-4039-937d-0cb6289eaeb2.png
ADDED
Git LFS Details
|
train/097c9da6-0eb1-4c03-8873-82faa1e8c996.png
ADDED
Git LFS Details
|
train/09e3d405-12e3-4618-a77a-13be8eb66af3.png
ADDED
Git LFS Details
|
train/09e5f384-1a1d-4adf-9fb1-7d8dc13e4777.png
ADDED
Git LFS Details
|
train/0a74339c-5547-4aa7-a2bb-494f14f8cb7d.png
ADDED
Git LFS Details
|
train/0b263a7d-fad8-4acd-b8f5-c17236cc0573.png
ADDED
Git LFS Details
|
train/0bf053d3-770e-49c0-9b3b-560799153013.png
ADDED
Git LFS Details
|
train/0cc5ccfb-dfd4-420f-b9b4-f6ec6667c4f5.png
ADDED
Git LFS Details
|
train/0d3f9c1d-2b79-4d99-9c9b-760066956b0f.png
ADDED
Git LFS Details
|
train/0da476ce-7ac6-446a-ae45-8e5feec23f4d.png
ADDED
Git LFS Details
|
train/0dbbc535-334f-438e-9823-56af6641856b.png
ADDED
Git LFS Details
|
train/0dd3c67f-6c1c-4125-b008-bdc6979dd026.png
ADDED
Git LFS Details
|
train/0ecbf570-7b7a-4b27-b6ef-fdd51f2b86d0.png
ADDED
Git LFS Details
|
train/0eef49cf-aff3-4ac1-b3bf-dff7120af16c.png
ADDED
Git LFS Details
|
train/0ef5bf53-5b79-4790-8887-93556bab0001.png
ADDED
Git LFS Details
|
train/0f152466-ce71-44df-b19f-43cc4e5a588a.png
ADDED
Git LFS Details
|
train/0f9212ad-11ff-4603-b167-11f3a47e9b1f.png
ADDED
Git LFS Details
|
train/0fe7153b-db42-4802-8554-205671b2c77d.png
ADDED
Git LFS Details
|
train/10963988-1ad4-4caa-b747-0aeb44e5120d.png
ADDED
Git LFS Details
|
train/10de3b70-28fe-4f85-9965-d1a0485cadd7.png
ADDED
Git LFS Details
|
train/11119176-b46a-4607-9930-36ffc10cc639.png
ADDED
Git LFS Details
|
train/1136fb0d-457d-4483-bbde-12cd18594b84.png
ADDED
Git LFS Details
|
train/116355f4-d18f-4b43-bb31-6989c9575ae1.png
ADDED
Git LFS Details
|
train/12199e7e-366e-4029-87e8-f5c8dc1f2057.png
ADDED
Git LFS Details
|
train/121bcfa3-26ff-4659-a64e-3113f7c95855.png
ADDED
Git LFS Details
|
train/122430be-20ab-47c8-adaf-23d6ba5091fc.png
ADDED
Git LFS Details
|
train/12b3ea2c-863e-46c7-9cc0-ebc77e6e9757.png
ADDED
Git LFS Details
|
train/13b079f6-1b8a-4fc9-91f3-b5728dcf9c75.png
ADDED
Git LFS Details
|