Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 4,187 Bytes
fe2f1d0
 
 
a87ff0e
fabacba
fe2f1d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4575131
79750b5
 
 
 
 
 
 
 
 
 
fe2f1d0
 
79750b5
 
 
fe2f1d0
 
 
fabacba
 
 
 
0dc1574
fabacba
 
 
d7761f1
fabacba
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os

import datasets
from typing import List
import json

logger = datasets.logging.get_logger(__name__)


_CITATION = """
"""

_DESCRIPTION = """
This is the dataset repository for PLOD Dataset accepted to be published at LREC 2022.
The dataset can help build sequence labelling models for the task Abbreviation Detection.
"""

class PLODfilteredConfig(datasets.BuilderConfig):
    """BuilderConfig for Conll2003"""

    def __init__(self, **kwargs):
        """BuilderConfig forConll2003.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(PLODfilteredConfig, self).__init__(**kwargs)


class PLODfilteredConfig(datasets.GeneratorBasedBuilder):
    """PLOD Filtered dataset."""

    BUILDER_CONFIGS = [
        PLODfilteredConfig(name="PLODfiltered", version=datasets.Version("0.0.2"), description="PLOD filtered dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "pos_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "ADJ",
                                "ADP",
                                "ADV",
                                "AUX",
                                "CONJ",
                                "CCONJ",
                                "DET",
                                "INTJ",
                                "NOUN",
                                "NUM",
                                "PART",
                                "PRON",
                                "PROPN",
                                "PUNCT",
                                "SCONJ",
                                "SYM",
                                "VERB",
                                "X",
                                "SPACE"
                            ]
                        )
                    ),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "B-O",
                                "B-AC",
                                "I-AC",
                                "B-LF",
                                "I-LF"
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://github.com/surrey-nlp/PLOD-AbbreviationDetection",
            citation=_CITATION,
        )

    _URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-filtered/resolve/main/data/"
    _URLS = {
        "train": _URL + "PLOS-train70-filtered-pos_bio.json",
        "dev": _URL + "PLOS-val15-filtered-pos_bio.json",
        "test": _URL + "PLOS-test15-filtered-pos_bio.json"
    }

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        urls_to_download = self._URLS
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]})
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        with open(filepath) as f:
            plod = json.load(f)
            for object in plod:
                id_ = int(object['id'])
                yield id_, {
                    "id": str(id_),
                    "tokens": object['tokens'],
                    "pos_tags": object['pos_tags'],
                    "ner_tags": object['ner_tags'],
                }