Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 1 new columns ({'有个学生的最好的朋友把坡卖了'}) and 5 missing columns ({'2', '3', '0', '1', 'Unnamed: 0'}).

This happened while the csv dataset builder was generating data using

hf://datasets/suchirsalhan/CLiMP/ba_construction_1000.csv (at revision 8d48c53d190efeb277c74c7cf05503d3b2edaa68)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              有个学生的最好的朋友把坡卖了: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 530
              to
              {'Unnamed: 0': Value(dtype='int64', id=None), '0': Value(dtype='string', id=None), '1': Value(dtype='string', id=None), '2': Value(dtype='string', id=None), '3': Value(dtype='int64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1321, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 935, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1 new columns ({'有个学生的最好的朋友把坡卖了'}) and 5 missing columns ({'2', '3', '0', '1', 'Unnamed: 0'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/suchirsalhan/CLiMP/ba_construction_1000.csv (at revision 8d48c53d190efeb277c74c7cf05503d3b2edaa68)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Unnamed: 0
int64
0
string
1
string
2
string
3
int64
0
anaphor_agreement
anaphor_agreement_gender
李思彤治疗过她自己
1
1
anaphor_agreement
anaphor_agreement_gender
李思彤治疗过它自己
0
2
anaphor_agreement
anaphor_agreement_gender
谈欣激怒了她自己
1
3
anaphor_agreement
anaphor_agreement_gender
谈欣激怒了它自己
0
4
anaphor_agreement
anaphor_agreement_gender
叶梓逃离了他自己
1
5
anaphor_agreement
anaphor_agreement_gender
叶梓逃离了她自己
0
6
anaphor_agreement
anaphor_agreement_gender
有个女服务员正在治愈她自己
1
7
anaphor_agreement
anaphor_agreement_gender
有个女服务员正在治愈他自己
0
8
anaphor_agreement
anaphor_agreement_gender
仇一诺正在伤害她自己
1
9
anaphor_agreement
anaphor_agreement_gender
仇一诺正在伤害他自己
0
10
anaphor_agreement
anaphor_agreement_gender
卢诗韵调查了她自己
1
11
anaphor_agreement
anaphor_agreement_gender
卢诗韵调查了它自己
0
12
anaphor_agreement
anaphor_agreement_gender
凌菲正在质疑她自己
1
13
anaphor_agreement
anaphor_agreement_gender
凌菲正在质疑它自己
0
14
anaphor_agreement
anaphor_agreement_gender
张厚望迷惑了他自己
1
15
anaphor_agreement
anaphor_agreement_gender
张厚望迷惑了她自己
0
16
anaphor_agreement
anaphor_agreement_gender
王可馨仍在厌恶她自己
1
17
anaphor_agreement
anaphor_agreement_gender
王可馨仍在厌恶它自己
0
18
anaphor_agreement
anaphor_agreement_gender
万智芸仍在厌恶她自己
1
19
anaphor_agreement
anaphor_agreement_gender
万智芸仍在厌恶他自己
0
20
anaphor_agreement
anaphor_agreement_gender
张永祥正在听他自己
1
21
anaphor_agreement
anaphor_agreement_gender
张永祥正在听它自己
0
22
anaphor_agreement
anaphor_agreement_gender
张涛记住了他自己
1
23
anaphor_agreement
anaphor_agreement_gender
张涛记住了她自己
0
24
anaphor_agreement
anaphor_agreement_gender
许逸航看过他自己
1
25
anaphor_agreement
anaphor_agreement_gender
许逸航看过它自己
0
26
anaphor_agreement
anaphor_agreement_gender
那个家伙过去听起来像他自己
1
27
anaphor_agreement
anaphor_agreement_gender
那个家伙过去听起来像她自己
0
28
anaphor_agreement
anaphor_agreement_gender
宋瑞芝注意过她自己
1
29
anaphor_agreement
anaphor_agreement_gender
宋瑞芝注意过他自己
0
30
anaphor_agreement
anaphor_agreement_gender
马娟正在震惊她自己
1
31
anaphor_agreement
anaphor_agreement_gender
马娟正在震惊它自己
0
32
anaphor_agreement
anaphor_agreement_gender
高屹森正在质疑他自己
1
33
anaphor_agreement
anaphor_agreement_gender
高屹森正在质疑她自己
0
34
anaphor_agreement
anaphor_agreement_gender
何汉观测过他自己
1
35
anaphor_agreement
anaphor_agreement_gender
何汉观测过它自己
0
36
anaphor_agreement
anaphor_agreement_gender
李悦拥抱着她自己
1
37
anaphor_agreement
anaphor_agreement_gender
李悦拥抱着它自己
0
38
anaphor_agreement
anaphor_agreement_gender
有些女服务员正在伤害她自己
1
39
anaphor_agreement
anaphor_agreement_gender
有些女服务员正在伤害它自己
0
40
anaphor_agreement
anaphor_agreement_gender
周慧敏侵扰了她自己
1
41
anaphor_agreement
anaphor_agreement_gender
周慧敏侵扰了他自己
0
42
anaphor_agreement
anaphor_agreement_gender
凌菲正在观察她自己
1
43
anaphor_agreement
anaphor_agreement_gender
凌菲正在观察他自己
0
44
anaphor_agreement
anaphor_agreement_gender
张欣然转移了她自己
1
45
anaphor_agreement
anaphor_agreement_gender
张欣然转移了他自己
0
46
anaphor_agreement
anaphor_agreement_gender
叶梓尊重过他自己
1
47
anaphor_agreement
anaphor_agreement_gender
叶梓尊重过她自己
0
48
anaphor_agreement
anaphor_agreement_gender
崔兆亮接近了他自己
1
49
anaphor_agreement
anaphor_agreement_gender
崔兆亮接近了它自己
0
50
anaphor_agreement
anaphor_agreement_gender
朱德玲亲了她自己
1
51
anaphor_agreement
anaphor_agreement_gender
朱德玲亲了他自己
0
52
anaphor_agreement
anaphor_agreement_gender
张静正在抱怨她自己
1
53
anaphor_agreement
anaphor_agreement_gender
张静正在抱怨他自己
0
54
anaphor_agreement
anaphor_agreement_gender
关彤彤合作过她自己
1
55
anaphor_agreement
anaphor_agreement_gender
关彤彤合作过它自己
0
56
anaphor_agreement
anaphor_agreement_gender
那个女演员正在担心她自己
1
57
anaphor_agreement
anaphor_agreement_gender
那个女演员正在担心它自己
0
58
anaphor_agreement
anaphor_agreement_gender
汪乐知考虑过他自己
1
59
anaphor_agreement
anaphor_agreement_gender
汪乐知考虑过它自己
0
60
anaphor_agreement
anaphor_agreement_gender
董怡攻击了她自己
1
61
anaphor_agreement
anaphor_agreement_gender
董怡攻击了他自己
0
62
anaphor_agreement
anaphor_agreement_gender
张婷正在激怒她自己
1
63
anaphor_agreement
anaphor_agreement_gender
张婷正在激怒它自己
0
64
anaphor_agreement
anaphor_agreement_gender
徐黄发现了他自己
1
65
anaphor_agreement
anaphor_agreement_gender
徐黄发现了它自己
0
66
anaphor_agreement
anaphor_agreement_gender
张伟注意过他自己
1
67
anaphor_agreement
anaphor_agreement_gender
张伟注意过它自己
0
68
anaphor_agreement
anaphor_agreement_gender
孙莹莹调查了她自己
1
69
anaphor_agreement
anaphor_agreement_gender
孙莹莹调查了它自己
0
70
anaphor_agreement
anaphor_agreement_gender
张红梅正在麻烦她自己
1
71
anaphor_agreement
anaphor_agreement_gender
张红梅正在麻烦他自己
0
72
anaphor_agreement
anaphor_agreement_gender
周一博参观了他自己
1
73
anaphor_agreement
anaphor_agreement_gender
周一博参观了它自己
0
74
anaphor_agreement
anaphor_agreement_gender
李哲警告了他自己
1
75
anaphor_agreement
anaphor_agreement_gender
李哲警告了它自己
0
76
anaphor_agreement
anaphor_agreement_gender
李倩倩侵扰了她自己
1
77
anaphor_agreement
anaphor_agreement_gender
李倩倩侵扰了他自己
0
78
anaphor_agreement
anaphor_agreement_gender
张丽华叨扰了她自己
1
79
anaphor_agreement
anaphor_agreement_gender
张丽华叨扰了它自己
0
80
anaphor_agreement
anaphor_agreement_gender
这些女士厌恶过她自己
1
81
anaphor_agreement
anaphor_agreement_gender
这些女士厌恶过它自己
0
82
anaphor_agreement
anaphor_agreement_gender
周一博知道了他自己
1
83
anaphor_agreement
anaphor_agreement_gender
周一博知道了她自己
0
84
anaphor_agreement
anaphor_agreement_gender
程丽莎看过她自己
1
85
anaphor_agreement
anaphor_agreement_gender
程丽莎看过它自己
0
86
anaphor_agreement
anaphor_agreement_gender
游欢欢正在尴尬她自己
1
87
anaphor_agreement
anaphor_agreement_gender
游欢欢正在尴尬它自己
0
88
anaphor_agreement
anaphor_agreement_gender
梁楠正在参观他自己
1
89
anaphor_agreement
anaphor_agreement_gender
梁楠正在参观她自己
0
90
anaphor_agreement
anaphor_agreement_gender
马娟警告了她自己
1
91
anaphor_agreement
anaphor_agreement_gender
马娟警告了它自己
0
92
anaphor_agreement
anaphor_agreement_gender
刘桂兰正在治疗她自己
1
93
anaphor_agreement
anaphor_agreement_gender
刘桂兰正在治疗它自己
0
94
anaphor_agreement
anaphor_agreement_gender
郝良帅正在震惊他自己
1
95
anaphor_agreement
anaphor_agreement_gender
郝良帅正在震惊她自己
0
96
anaphor_agreement
anaphor_agreement_gender
林雨桐仍在厌恶她自己
1
97
anaphor_agreement
anaphor_agreement_gender
林雨桐仍在厌恶它自己
0
98
anaphor_agreement
anaphor_agreement_gender
李哲正在烦扰他自己
1
99
anaphor_agreement
anaphor_agreement_gender
李哲正在烦扰她自己
0
End of preview.

CLiMP: A Benchmark for Chinese Language Model Evaluation

arxiv

This is the official SLING dataset, accompanying the EACL 2021 paper "CLiMP: A Benchmark for Chinese Language Model Evaluation" by Beilei Xiang,1 Changbing Yang,1 Yu Li,1 Alex Warstadt2 and Katharina Kann1.

You can find the paper on arxiv.

We use this dataset for evaluation of a small-scale Chinese Language Model for the BabyLM Challenge.

Citation Information

If you use CLiMP, please cite the original paper as follows:

@inproceedings{xiang-etal-2021-climp,
    title = "{CL}i{MP}: A Benchmark for {C}hinese Language Model Evaluation",
    author = "Xiang, Beilei  and
      Yang, Changbing  and
      Li, Yu  and
      Warstadt, Alex  and
      Kann, Katharina",
    editor = "Merlo, Paola  and
      Tiedemann, Jorg  and
      Tsarfaty, Reut",
    booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
    month = apr,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.eacl-main.242",
    doi = "10.18653/v1/2021.eacl-main.242",
    pages = "2784--2790",
    abstract = "Linguistically informed analyses of language models (LMs) contribute to the understanding and improvement of such models. Here, we introduce the corpus of Chinese linguistic minimal pairs (CLiMP) to investigate what knowledge Chinese LMs acquire. CLiMP consists of sets of 1000 minimal pairs (MPs) for 16 syntactic contrasts in Chinese, covering 9 major Chinese linguistic phenomena. The MPs are semi-automatically generated, and human agreement with the labels in CLiMP is 95.8{\%}. We evaluate 11 different LMs on CLiMP, covering n-grams, LSTMs, and Chinese BERT. We find that classifier{--}noun agreement and verb complement selection are the phenomena that models generally perform best at. However, models struggle the most with the ba construction, binding, and filler-gap dependencies. Overall, Chinese BERT achieves an 81.8{\%} average accuracy, while the performances of LSTMs and 5-grams are only moderately above chance level.",
}
Downloads last month
57