ticker
stringlengths 1
7
| date
timestamp[ns] | target
float64 0
1
| future_returns
float32 -0.99
381
| prediction
float64 0.12
0.81
| bottom_prediction
float64 0.12
0.77
| top_prediction
float64 0.13
0.84
| standard_deviation
float64 0
0.08
| bottom_conformal
float64 0
0.38
| top_conformal
float64 0.37
0.79
| slope
float64 -1.65
1.58
|
---|---|---|---|---|---|---|---|---|---|---|
A | 2023-06-06T00:00:00 | 1 | 0.020974 | 0.259972 | 0.244873 | 0.265925 | 0.006986 | 0.053733 | 0.470055 | -0.068901 |
A | 2023-06-07T00:00:00 | 1 | 0.030481 | 0.266953 | 0.248898 | 0.274384 | 0.008 | 0.059766 | 0.476087 | -0.064751 |
A | 2023-06-08T00:00:00 | 1 | 0.065903 | 0.274504 | 0.262212 | 0.280791 | 0.005995 | 0.06723 | 0.483552 | -0.06272 |
A | 2023-06-09T00:00:00 | 1 | 0.061489 | 0.300805 | 0.285866 | 0.31093 | 0.009352 | 0.08826 | 0.504582 | -0.057228 |
A | 2023-06-12T00:00:00 | 1 | 0.023252 | 0.295287 | 0.278073 | 0.307174 | 0.010241 | 0.087944 | 0.504265 | -0.052663 |
A | 2023-06-13T00:00:00 | 1 | 0.022076 | 0.254612 | 0.247364 | 0.264609 | 0.005354 | 0.046842 | 0.463164 | -0.054122 |
A | 2023-06-14T00:00:00 | 0 | -0.00375 | 0.253082 | 0.242777 | 0.265319 | 0.006454 | 0.046135 | 0.462457 | -0.056415 |
A | 2023-06-15T00:00:00 | 0 | -0.025313 | 0.253367 | 0.246099 | 0.26325 | 0.004821 | 0.045889 | 0.462211 | -0.058634 |
A | 2023-06-16T00:00:00 | 0 | -0.038409 | 0.24858 | 0.236154 | 0.256153 | 0.006319 | 0.044656 | 0.460978 | -0.061295 |
A | 2023-06-20T00:00:00 | 0 | -0.033489 | 0.244285 | 0.236928 | 0.254153 | 0.006503 | 0.047052 | 0.463374 | -0.064573 |
A | 2023-06-21T00:00:00 | 0 | -0.04241 | 0.240732 | 0.229032 | 0.251165 | 0.008044 | 0.046117 | 0.462438 | -0.067809 |
A | 2023-06-22T00:00:00 | 0 | -0.047932 | 0.240571 | 0.227655 | 0.253485 | 0.008369 | 0.044482 | 0.460803 | -0.071252 |
A | 2023-06-23T00:00:00 | 0 | -0.048388 | 0.235583 | 0.225518 | 0.247554 | 0.007693 | 0.038694 | 0.455016 | -0.074604 |
A | 2023-06-26T00:00:00 | 0 | -0.027675 | 0.240583 | 0.227576 | 0.248338 | 0.008092 | 0.045506 | 0.461828 | -0.075449 |
A | 2023-06-27T00:00:00 | 0 | -0.007807 | 0.244131 | 0.23133 | 0.251466 | 0.006877 | 0.04686 | 0.463182 | -0.077235 |
A | 2023-06-28T00:00:00 | 0 | -0.029809 | 0.245187 | 0.232947 | 0.25124 | 0.006666 | 0.053151 | 0.469473 | -0.075241 |
A | 2023-06-29T00:00:00 | 0 | -0.046843 | 0.249756 | 0.237975 | 0.259074 | 0.007065 | 0.056394 | 0.472716 | -0.077243 |
A | 2023-06-30T00:00:00 | 0 | -0.064693 | 0.255935 | 0.238757 | 0.266289 | 0.008698 | 0.056614 | 0.472936 | -0.077894 |
A | 2023-07-03T00:00:00 | 0 | -0.080366 | 0.251615 | 0.239166 | 0.260765 | 0.007293 | 0.056642 | 0.472964 | -0.07951 |
A | 2023-07-05T00:00:00 | 0 | -0.067699 | 0.248116 | 0.236668 | 0.253329 | 0.006454 | 0.048165 | 0.464487 | -0.080037 |
A | 2023-07-06T00:00:00 | 0 | -0.054801 | 0.245531 | 0.234636 | 0.254513 | 0.007465 | 0.051504 | 0.467826 | -0.082154 |
A | 2023-07-07T00:00:00 | 0 | -0.053591 | 0.247197 | 0.234071 | 0.257129 | 0.008022 | 0.053136 | 0.469457 | -0.084083 |
A | 2023-07-10T00:00:00 | 0 | -0.066408 | 0.256856 | 0.245448 | 0.273853 | 0.00855 | 0.054954 | 0.471276 | -0.08293 |
A | 2023-07-11T00:00:00 | 0 | -0.054692 | 0.244251 | 0.231837 | 0.25439 | 0.008023 | 0.048826 | 0.465148 | -0.08514 |
A | 2023-07-12T00:00:00 | 0 | -0.068166 | 0.249196 | 0.236223 | 0.258371 | 0.008034 | 0.05109 | 0.467412 | -0.084615 |
A | 2023-07-13T00:00:00 | 0 | -0.068917 | 0.251805 | 0.236758 | 0.263519 | 0.009848 | 0.051526 | 0.467848 | -0.081131 |
A | 2023-07-14T00:00:00 | 0 | -0.077381 | 0.257914 | 0.242145 | 0.268486 | 0.008254 | 0.053264 | 0.469586 | -0.075338 |
A | 2023-07-17T00:00:00 | 0 | -0.053732 | 0.261448 | 0.245087 | 0.268814 | 0.007107 | 0.055143 | 0.471465 | -0.068036 |
A | 2023-07-18T00:00:00 | 0 | -0.075159 | 0.264997 | 0.256028 | 0.272227 | 0.005672 | 0.055984 | 0.472306 | -0.061646 |
A | 2023-07-19T00:00:00 | 0 | -0.099248 | 0.272441 | 0.265206 | 0.285519 | 0.006568 | 0.063817 | 0.480139 | -0.050681 |
A | 2023-07-20T00:00:00 | 0 | -0.104734 | 0.280885 | 0.27305 | 0.295579 | 0.007986 | 0.066056 | 0.482378 | -0.040571 |
A | 2023-07-21T00:00:00 | 0 | -0.110491 | 0.290938 | 0.285151 | 0.299021 | 0.005572 | 0.068139 | 0.484461 | -0.028046 |
A | 2023-07-24T00:00:00 | 0 | -0.110476 | 0.296626 | 0.289498 | 0.30669 | 0.005527 | 0.068518 | 0.48484 | -0.014691 |
A | 2023-07-25T00:00:00 | 0 | -0.142554 | 0.302752 | 0.29742 | 0.318752 | 0.006792 | 0.069714 | 0.486036 | 0.00224 |
A | 2023-07-26T00:00:00 | 0 | -0.138055 | 0.295046 | 0.288207 | 0.308329 | 0.006581 | 0.069103 | 0.485425 | 0.016407 |
A | 2023-07-27T00:00:00 | 0 | -0.117908 | 0.280516 | 0.268837 | 0.287715 | 0.007589 | 0.06174 | 0.478062 | 0.027324 |
A | 2023-07-28T00:00:00 | 0 | -0.106481 | 0.281129 | 0.268288 | 0.291608 | 0.00842 | 0.06144 | 0.477762 | 0.039741 |
A | 2023-07-31T00:00:00 | 0 | -0.106263 | 0.270454 | 0.257534 | 0.280759 | 0.008548 | 0.059317 | 0.475639 | 0.044566 |
A | 2023-08-01T00:00:00 | 0 | -0.104082 | 0.268683 | 0.25631 | 0.278659 | 0.008216 | 0.058841 | 0.475163 | 0.04883 |
A | 2023-08-02T00:00:00 | 0 | -0.142968 | 0.278199 | 0.263104 | 0.292262 | 0.010367 | 0.060475 | 0.476797 | 0.050032 |
A | 2023-08-03T00:00:00 | 0 | -0.123855 | 0.274486 | 0.263133 | 0.287772 | 0.009415 | 0.060458 | 0.47678 | 0.050547 |
A | 2023-08-04T00:00:00 | 0 | -0.161882 | 0.285048 | 0.26962 | 0.29478 | 0.009402 | 0.061064 | 0.477386 | 0.052034 |
A | 2023-08-07T00:00:00 | 0 | -0.181016 | 0.287446 | 0.271719 | 0.299451 | 0.010583 | 0.061311 | 0.477633 | 0.053251 |
A | 2023-08-08T00:00:00 | 0 | -0.185652 | 0.278156 | 0.26302 | 0.28444 | 0.008256 | 0.056453 | 0.472774 | 0.052992 |
A | 2023-08-09T00:00:00 | 0 | -0.193142 | 0.255723 | 0.246758 | 0.268173 | 0.008247 | 0.040505 | 0.456827 | 0.048536 |
A | 2023-08-10T00:00:00 | 0 | -0.205836 | 0.258248 | 0.249166 | 0.270694 | 0.007939 | 0.038955 | 0.455276 | 0.047018 |
A | 2023-08-11T00:00:00 | 0 | -0.183506 | 0.256566 | 0.246002 | 0.269737 | 0.009171 | 0.038653 | 0.454974 | 0.046109 |
A | 2023-08-14T00:00:00 | 0 | -0.186192 | 0.261039 | 0.250895 | 0.272622 | 0.00844 | 0.038953 | 0.455275 | 0.047669 |
A | 2023-08-15T00:00:00 | 0 | -0.166878 | 0.249081 | 0.239024 | 0.259407 | 0.007925 | 0.035093 | 0.451415 | 0.047382 |
A | 2023-08-16T00:00:00 | 0 | -0.099864 | 0.237899 | 0.226916 | 0.247712 | 0.00837 | 0.02902 | 0.445342 | 0.044861 |
A | 2023-08-17T00:00:00 | 0 | -0.108417 | 0.238828 | 0.226745 | 0.247886 | 0.009019 | 0.028699 | 0.445021 | 0.042863 |
A | 2023-08-18T00:00:00 | 0 | -0.071158 | 0.242656 | 0.227809 | 0.255346 | 0.008496 | 0.029259 | 0.445581 | 0.03693 |
A | 2023-08-21T00:00:00 | 0 | -0.077808 | 0.240125 | 0.226461 | 0.251363 | 0.010245 | 0.029382 | 0.445704 | 0.031151 |
A | 2023-08-22T00:00:00 | 0 | -0.082294 | 0.236245 | 0.224683 | 0.248629 | 0.008467 | 0.029891 | 0.446213 | 0.023757 |
A | 2023-08-23T00:00:00 | 0 | -0.087633 | 0.24177 | 0.229958 | 0.254175 | 0.007342 | 0.03107 | 0.447392 | 0.017547 |
A | 2023-08-24T00:00:00 | 0 | -0.098852 | 0.242634 | 0.225589 | 0.254175 | 0.009338 | 0.03107 | 0.447392 | 0.011022 |
A | 2023-08-25T00:00:00 | 0 | -0.065533 | 0.240987 | 0.223642 | 0.250344 | 0.007965 | 0.031782 | 0.448104 | 0.003872 |
A | 2023-08-28T00:00:00 | 0 | -0.05078 | 0.252802 | 0.23352 | 0.262531 | 0.010745 | 0.04667 | 0.462992 | -0.000743 |
A | 2023-08-29T00:00:00 | 0 | -0.062275 | 0.244501 | 0.22731 | 0.254011 | 0.009536 | 0.036096 | 0.452418 | -0.006647 |
A | 2023-08-30T00:00:00 | 0 | -0.075813 | 0.251581 | 0.234855 | 0.26548 | 0.011849 | 0.03809 | 0.454411 | -0.008605 |
A | 2023-08-31T00:00:00 | 0 | -0.056647 | 0.250188 | 0.233355 | 0.267834 | 0.012092 | 0.038051 | 0.454373 | -0.010087 |
A | 2023-09-01T00:00:00 | 1 | 0.018545 | 0.258356 | 0.243229 | 0.272872 | 0.010698 | 0.03878 | 0.455102 | -0.008992 |
A | 2023-09-05T00:00:00 | 1 | 0.04642 | 0.25971 | 0.243804 | 0.275826 | 0.010578 | 0.040159 | 0.45648 | -0.006347 |
A | 2023-09-06T00:00:00 | 1 | 0.075772 | 0.26258 | 0.244727 | 0.274386 | 0.011491 | 0.041316 | 0.457638 | 0.001308 |
A | 2023-09-07T00:00:00 | 1 | 0.077448 | 0.258582 | 0.243746 | 0.271094 | 0.011024 | 0.040079 | 0.456401 | 0.007584 |
A | 2023-09-08T00:00:00 | 1 | 0.096267 | 0.251891 | 0.243458 | 0.269635 | 0.008489 | 0.040689 | 0.45701 | 0.006074 |
A | 2023-09-11T00:00:00 | 1 | 0.130403 | 0.253084 | 0.243072 | 0.265395 | 0.006885 | 0.042879 | 0.459201 | 0.004515 |
A | 2023-09-12T00:00:00 | 1 | 0.135478 | 0.257989 | 0.252178 | 0.273967 | 0.006888 | 0.054686 | 0.471007 | 0.003808 |
A | 2023-09-13T00:00:00 | 1 | 0.137718 | 0.269016 | 0.259435 | 0.274591 | 0.005907 | 0.054092 | 0.470413 | 0.004072 |
A | 2023-09-14T00:00:00 | 1 | 0.12415 | 0.270378 | 0.264559 | 0.276708 | 0.005133 | 0.053934 | 0.470256 | 0.003718 |
A | 2023-09-15T00:00:00 | 1 | 0.105509 | 0.27128 | 0.265561 | 0.280907 | 0.005878 | 0.05307 | 0.469392 | 0.002765 |
A | 2023-09-18T00:00:00 | 1 | 0.146249 | 0.258152 | 0.25261 | 0.26223 | 0.003678 | 0.0501 | 0.466422 | -0.000538 |
A | 2023-09-19T00:00:00 | 1 | 0.148083 | 0.25673 | 0.253732 | 0.259959 | 0.001929 | 0.0501 | 0.466422 | -0.005017 |
A | 2023-09-20T00:00:00 | 1 | 0.133259 | 0.255019 | 0.25047 | 0.258938 | 0.002324 | 0.049669 | 0.46599 | -0.009046 |
A | 2023-09-21T00:00:00 | 1 | 0.177721 | 0.249622 | 0.244069 | 0.255537 | 0.004363 | 0.048177 | 0.464499 | -0.013439 |
A | 2023-09-22T00:00:00 | 1 | 0.158343 | 0.260184 | 0.254638 | 0.265437 | 0.004451 | 0.054979 | 0.471301 | -0.015952 |
A | 2023-09-25T00:00:00 | 1 | 0.197177 | 0.259972 | 0.252588 | 0.264554 | 0.004604 | 0.053839 | 0.470161 | -0.017809 |
A | 2023-09-26T00:00:00 | 1 | 0.24844 | 0.262979 | 0.253611 | 0.277924 | 0.007257 | 0.056085 | 0.472407 | -0.018183 |
A | 2023-09-27T00:00:00 | 1 | 0.240338 | 0.268991 | 0.259591 | 0.281044 | 0.006564 | 0.060546 | 0.476867 | -0.018342 |
A | 2023-09-28T00:00:00 | 1 | 0.230435 | 0.275534 | 0.266529 | 0.290066 | 0.007183 | 0.061064 | 0.477385 | -0.018118 |
A | 2023-09-29T00:00:00 | 1 | 0.252677 | 0.276731 | 0.269101 | 0.290066 | 0.006449 | 0.061257 | 0.477579 | -0.018288 |
A | 2023-10-02T00:00:00 | 1 | 0.245996 | 0.256769 | 0.249452 | 0.267234 | 0.006124 | 0.055462 | 0.471784 | -0.021622 |
A | 2023-10-03T00:00:00 | 1 | 0.260106 | 0.268238 | 0.258912 | 0.288422 | 0.00976 | 0.056305 | 0.472626 | -0.021492 |
A | 2023-10-04T00:00:00 | 1 | 0.249844 | 0.265362 | 0.259709 | 0.273534 | 0.005704 | 0.053698 | 0.47002 | -0.024033 |
A | 2023-10-05T00:00:00 | 1 | 0.266975 | 0.25816 | 0.252895 | 0.269053 | 0.006936 | 0.053376 | 0.469698 | -0.027033 |
A | 2023-10-06T00:00:00 | 1 | 0.263746 | 0.255883 | 0.245748 | 0.26427 | 0.007027 | 0.051402 | 0.467724 | -0.030015 |
A | 2023-10-09T00:00:00 | 1 | 0.256021 | 0.247584 | 0.238101 | 0.264741 | 0.008873 | 0.052057 | 0.468379 | -0.033344 |
A | 2023-10-10T00:00:00 | 1 | 0.229288 | 0.249422 | 0.239962 | 0.259329 | 0.007813 | 0.053013 | 0.469335 | -0.035716 |
A | 2023-10-11T00:00:00 | 1 | 0.225837 | 0.246577 | 0.234018 | 0.261606 | 0.010316 | 0.05063 | 0.466952 | -0.037886 |
A | 2023-10-12T00:00:00 | 1 | 0.206004 | 0.237536 | 0.225679 | 0.250151 | 0.007988 | 0.048096 | 0.464418 | -0.040174 |
A | 2023-10-13T00:00:00 | 1 | 0.187425 | 0.250783 | 0.245646 | 0.261199 | 0.005995 | 0.047405 | 0.463727 | -0.038665 |
A | 2023-10-16T00:00:00 | 1 | 0.17293 | 0.232243 | 0.224934 | 0.235134 | 0.003466 | 0.038404 | 0.454726 | -0.038324 |
A | 2023-10-17T00:00:00 | 1 | 0.188672 | 0.234952 | 0.225439 | 0.240575 | 0.004693 | 0.038522 | 0.454844 | -0.036249 |
A | 2023-10-18T00:00:00 | 1 | 0.205249 | 0.232461 | 0.225439 | 0.236167 | 0.003528 | 0.039379 | 0.455701 | -0.033201 |
A | 2023-10-19T00:00:00 | 1 | 0.199093 | 0.234083 | 0.22561 | 0.23868 | 0.004298 | 0.04024 | 0.456561 | -0.030803 |
A | 2023-10-20T00:00:00 | 1 | 0.189234 | 0.226528 | 0.213001 | 0.23739 | 0.006712 | 0.040012 | 0.456334 | -0.031767 |
A | 2023-10-23T00:00:00 | 1 | 0.195913 | 0.237018 | 0.232443 | 0.239164 | 0.002606 | 0.042165 | 0.458487 | -0.030607 |
A | 2023-10-24T00:00:00 | 1 | 0.237715 | 0.230656 | 0.226683 | 0.233565 | 0.002213 | 0.041972 | 0.458294 | -0.032055 |
A | 2023-10-25T00:00:00 | 1 | 0.241181 | 0.233527 | 0.226683 | 0.243639 | 0.005087 | 0.044614 | 0.460936 | -0.033111 |
A | 2023-10-26T00:00:00 | 1 | 0.252821 | 0.24028 | 0.230546 | 0.249265 | 0.007153 | 0.049601 | 0.465923 | -0.031252 |
Price Breakout
Data Notice: This dataset provides academic research access with a 6-month data lag. For real-time data access, please visit sov.ai to subscribe. For market insights and additional subscription options, check out our newsletter at blog.sov.ai.
from datasets import load_dataset
df_breakout = load_dataset("sovai/price_breakout", split="train").to_pandas().set_index(["ticker","date"])
Daily predictions arrive between 11 pm - 4 am before market open in the US for 13,000+ stocks.
Tutorials
are the best documentation — Price Breakout Prediction Tutorial
Category | Details |
---|---|
Input Datasets | Historical Stock Prices, Trading Volumes, Technical Indicators, Order Book. |
Models Used | Classification Algorithms, Regression Models, Conformal Predictors |
Model Outputs | Price Movement Predictions, Probability Scores, Confidence Intervals |
Description
This datasets identifies potential price breakout stocks over the next 30-60 days for US Equities. This dataset provides daily predictions of upward price breakouts for over 13,000 US equities.
The accuracy is around 65% and ROC-AUC of 68%, it is one of the most accurate breakout models on the market. It is retrained on a weekly basis.
Several machine learning models are trained using the prepared dataset:
- Calibrated Classifier: A classification model trained on the engineered features to predict the binary target.
- Proprietory Regressor: A proprietory regression model is used to predict the probability of a price increase.
- Conformal Regressor: Used to provide calibrated confidence intervals around the predictions, offering an additional measure of uncertainty.
Data Access
Retrieving Data
Latest Data
import sovai as sov
df_breakout = sov.data("breakout")
Full history
import sovai as sov
df_breakout = sov.data("breakout", full_history=True)
Specific Ticker
df_msft = sov.data("breakout", tickers=["MSFT"])
Plots
Line Predictions
df_breakout.plot_line(tickers=["TSLA", "META", "NFLX"])
Breakout Predictions
Visualize breakout predictions using the SDK's plotting capabilities:
sov.plot("breakout", chart_type="predictions", df=df_msft)
Prediction Accuracy
Assess the accuracy of breakout predictions:
sov.plot("breakout", chart_type="accuracy", df=df_msft)
Data Dictionary
Column | Description | Type | Example |
---|---|---|---|
ticker | Stock ticker symbol. | object | "AAPL" |
date | Date when the data was recorded. | datetime64[ns] | 2023-09-30 |
target | Target variable for predictions. | float64 | 0.05 |
future_returns | Future returns of the stock. | float32 | 0.10 |
prediction | Predicted probability from the model. | float64 | 1.25 |
bottom_prediction | Lower bound of the prediction interval. | float64 | 1.20 |
top_prediction | Upper bound of the prediction interval. | float64 | 1.30 |
standard_deviation | Standard deviation of the predictions. | float64 | 0.02 |
bottom_conformal | Lower bound of the conformal prediction interval. | float64 | 1.18 |
top_conformal | Upper bound of the conformal prediction interval. | float64 | 1.32 |
slope | Slope derived from the rolling regression of predictions over a window. | float64 | 0.003 |
Use Case
Understood. I'll focus on the use cases that would be most relevant to professional investors. Here's the refined list:
• Portfolio optimization:
- Identify potential new additions to diversified stock portfolios
- Rebalance existing holdings based on breakout predictions
• Risk management:
- Use confidence intervals and standard deviations to assess potential downside risk
- Implement more precise hedging strategies based on predicted price movements
• Sector and market analysis:
- Identify trends across industry sectors or the broader market
- Compare breakout potentials across different stock categories (e.g., large-cap vs. small-cap)
• Market timing:
- Use aggregate predictions across multiple stocks to gauge overall market sentiment
- Time entry and exit points for broader market positions
- Downloads last month
- 34