ticker
stringlengths 1
6
| date
timestamp[us] | probability_light
float64 1.46
98.4
| probability_convolution
float32 0
50
| probability_rocket
float64 0
98.9
| probability_encoder
float64 0.49
97.9
| probability_fundamental
float64 1.23
99.5
| sans_market
float64 -96.61
93.7
| probability
float64 0.49
85.7
| volatility
float64 0
50.1
| multiplier
float64 0.07
52.7
| version
int64 20.2M
20.2M
|
---|---|---|---|---|---|---|---|---|---|---|---|
A | 1999-11-30T00:00:00 | 1.48569 | 0.742845 | 1.48569 | 1.48569 | 1.23629 | -0.2494 | 1.299979 | 0 | 2.331466 | 20,240,901 |
A | 1999-12-31T00:00:00 | 1.48142 | 0.74071 | 1.48142 | 1.48142 | 1.23629 | -0.24513 | 1.296243 | 0 | 2.892753 | 20,240,901 |
A | 2000-01-31T00:00:00 | 1.48925 | 0.744625 | 1.48925 | 1.48925 | 1.23675 | -0.2525 | 1.303094 | 0 | 2.111402 | 20,240,901 |
A | 2000-02-29T00:00:00 | 1.48565 | 0.742825 | 1.48565 | 1.48565 | 1.23675 | -0.2489 | 1.299944 | 0 | 2.290044 | 20,240,901 |
A | 2000-03-31T00:00:00 | 1.47943 | 0.739715 | 1.47943 | 1.47943 | 1.236 | -0.24342 | 1.294501 | 0 | 2.020291 | 20,240,901 |
A | 2000-04-30T00:00:00 | 1.48314 | 0.74157 | 1.48314 | 1.48314 | 1.236 | -0.24714 | 1.297747 | 0 | 1.787359 | 20,240,901 |
A | 2000-05-31T00:00:00 | 1.48524 | 0.74262 | 1.48524 | 1.48524 | 1.236 | -0.24923 | 1.299585 | 0 | 1.662852 | 20,240,901 |
A | 2000-06-30T00:00:00 | 1.48632 | 0.74316 | 1.48632 | 1.48632 | 1.23875 | -0.24757 | 1.30053 | 0 | 2.11458 | 20,240,901 |
A | 2000-07-31T00:00:00 | 1.5269 | 0.76345 | 1.5269 | 1.5269 | 1.23875 | -0.28815 | 1.336038 | 0 | 1.205571 | 20,240,901 |
A | 2000-08-31T00:00:00 | 1.48657 | 0.743285 | 1.48657 | 1.48657 | 1.23875 | -0.24782 | 1.300749 | 0 | 2.333391 | 20,240,901 |
A | 2000-09-30T00:00:00 | 1.49923 | 0.749615 | 1.49923 | 1.49923 | 1.24006 | -0.25918 | 1.311826 | 0 | 1.778024 | 20,240,901 |
A | 2000-10-31T00:00:00 | 1.50451 | 0.752255 | 1.50451 | 1.50451 | 1.24006 | -0.26446 | 1.316446 | 0 | 1.688358 | 20,240,901 |
A | 2000-11-30T00:00:00 | 1.49781 | 0.748905 | 1.49781 | 1.49781 | 1.24006 | -0.25775 | 1.310584 | 0 | 1.875263 | 20,240,901 |
A | 2000-12-31T00:00:00 | 1.48324 | 0.74162 | 1.48324 | 1.48324 | 1.24006 | -0.24319 | 1.297835 | 0 | 2.310713 | 20,240,901 |
A | 2001-01-31T00:00:00 | 1.47619 | 0.738095 | 1.47619 | 1.47619 | 1.23914 | -0.23704 | 1.291666 | 0 | 2.796178 | 20,240,901 |
A | 2001-02-28T00:00:00 | 1.4814 | 0.7407 | 1.4814 | 1.4814 | 1.23914 | -0.24226 | 1.296225 | 0 | 2.020836 | 20,240,901 |
A | 2001-03-31T00:00:00 | 1.54395 | 0.771975 | 1.54395 | 1.54395 | 1.2486 | -0.29535 | 1.350956 | 0 | 1.33532 | 20,240,901 |
A | 2001-04-30T00:00:00 | 1.51187 | 0.755935 | 1.51187 | 1.51187 | 1.2486 | -0.26327 | 1.322886 | 0 | 1.697357 | 20,240,901 |
A | 2001-05-31T00:00:00 | 1.50374 | 0.75187 | 1.50374 | 1.50374 | 1.2486 | -0.25514 | 1.315772 | 0 | 1.87408 | 20,240,901 |
A | 2001-06-30T00:00:00 | 1.47666 | 0.73833 | 1.47666 | 1.47666 | 1.25155 | -0.22511 | 1.292078 | 0 | 3.33646 | 20,240,901 |
A | 2001-07-31T00:00:00 | 1.48917 | 0.744585 | 1.48917 | 1.48917 | 1.25155 | -0.23762 | 1.303024 | 0 | 2.109067 | 20,240,901 |
A | 2001-08-31T00:00:00 | 1.48287 | 0.741435 | 1.48287 | 1.48287 | 1.25155 | -0.23132 | 1.297511 | 0 | 2.600223 | 20,240,901 |
A | 2001-09-30T00:00:00 | 1.51719 | 0.758595 | 1.51719 | 1.51719 | 1.25524 | -0.26196 | 1.327541 | 0 | 1.108964 | 20,240,901 |
A | 2001-10-31T00:00:00 | 1.49178 | 0.42495 | 0.52054 | 1.44259 | 1.25524 | -0.23655 | 0.969965 | 0.47149 | 1.38034 | 20,240,901 |
A | 2001-11-30T00:00:00 | 1.4832 | 0.36722 | 0.29531 | 1.43843 | 1.25524 | -0.22796 | 0.89604 | 0.5751 | 2.084444 | 20,240,901 |
A | 2001-12-31T00:00:00 | 1.48249 | 0.395315 | 0.23405 | 1.4354 | 1.25524 | -0.22725 | 0.886814 | 0.59219 | 1.916109 | 20,240,901 |
A | 2002-01-31T00:00:00 | 1.49282 | 0.33021 | 0.12669 | 1.44226 | 1.25751 | -0.2353 | 0.847995 | 0.65756 | 1.743267 | 20,240,901 |
A | 2002-02-28T00:00:00 | 1.49581 | 0.363435 | 0.09477 | 1.44359 | 1.25507 | -0.24074 | 0.849401 | 0.66392 | 1.41574 | 20,240,901 |
A | 2002-03-31T00:00:00 | 1.51124 | 0.26705 | 0.14313 | 1.44477 | 1.27433 | -0.23691 | 0.841547 | 0.67746 | 0.749254 | 20,240,901 |
A | 2002-04-30T00:00:00 | 1.51806 | 0.33663 | 0.28552 | 1.44335 | 1.27433 | -0.24373 | 0.89589 | 0.60016 | 0.762038 | 20,240,901 |
A | 2002-05-31T00:00:00 | 1.53482 | 0.335735 | 0.17066 | 1.45182 | 1.2736 | -0.26122 | 0.873259 | 0.65284 | 0.656403 | 20,240,901 |
A | 2002-06-30T00:00:00 | 1.51383 | 0.38088 | 0.16405 | 1.44757 | 1.26897 | -0.24487 | 0.876582 | 0.63685 | 0.832739 | 20,240,901 |
A | 2002-07-31T00:00:00 | 1.58715 | 0.802665 | 0.17771 | 1.49071 | 1.26897 | -0.31818 | 1.014559 | 0.6935 | 0.461262 | 20,240,901 |
A | 2002-08-31T00:00:00 | 1.64787 | 0.83763 | 0.29614 | 1.54537 | 1.26897 | -0.3789 | 1.081752 | 0.6657 | 0.333251 | 20,240,901 |
A | 2002-09-30T00:00:00 | 1.55127 | 1.11804 | 0.38727 | 1.51815 | 1.28705 | -0.26421 | 1.143682 | 0.7658 | 0.792029 | 20,240,901 |
A | 2002-10-31T00:00:00 | 1.61963 | 1.22899 | 0.73838 | 1.5394 | 1.28705 | -0.33257 | 1.2816 | 0.70287 | 0.513133 | 20,240,901 |
A | 2002-11-30T00:00:00 | 1.63793 | 0.49109 | 0.53608 | 1.51236 | 1.28705 | -0.35088 | 1.044365 | 0.5077 | 0.370445 | 20,240,901 |
A | 2002-12-31T00:00:00 | 1.55823 | 0.6149 | 0.74955 | 1.47195 | 1.27877 | -0.27945 | 1.098657 | 0.36291 | 0.802572 | 20,240,901 |
A | 2003-01-31T00:00:00 | 1.56506 | 0.65188 | 0.44523 | 1.47849 | 1.27877 | -0.28629 | 1.035165 | 0.51357 | 0.695073 | 20,240,901 |
A | 2003-02-28T00:00:00 | 1.73753 | 1.27949 | 0.89175 | 1.5271 | 1.27877 | -0.45875 | 1.358967 | 0.68814 | 0.354246 | 20,240,901 |
A | 2003-03-31T00:00:00 | 1.52044 | 0.817585 | 1.78245 | 1.46391 | 1.2991 | -0.22134 | 1.396096 | 0.14068 | 1.067254 | 20,240,901 |
A | 2003-04-30T00:00:00 | 1.51136 | 0.525685 | 1.40821 | 1.45839 | 1.2991 | -0.21226 | 1.225911 | 0.20828 | 0.979295 | 20,240,901 |
A | 2003-05-31T00:00:00 | 1.50927 | 0.44366 | 0.79163 | 1.45735 | 1.2991 | -0.21018 | 1.050477 | 0.37437 | 0.850355 | 20,240,901 |
A | 2003-06-30T00:00:00 | 1.50576 | 0.26196 | 0.5359 | 1.44803 | 1.27468 | -0.23109 | 0.937912 | 0.54727 | 0.95854 | 20,240,901 |
A | 2003-07-31T00:00:00 | 1.50085 | 0.147805 | 0.25229 | 1.44185 | 1.27468 | -0.22617 | 0.835699 | 0.69196 | 0.867384 | 20,240,901 |
A | 2003-08-31T00:00:00 | 1.50053 | 0.12007 | 0.1961 | 1.44063 | 1.27468 | -0.22585 | 0.814333 | 0.72374 | 0.857336 | 20,240,901 |
A | 2003-09-30T00:00:00 | 1.51555 | 0.125515 | 0.25263 | 1.45092 | 1.2816 | -0.23395 | 0.836154 | 0.71144 | 0.750931 | 20,240,901 |
A | 2003-10-31T00:00:00 | 1.51032 | 0.086725 | 0.22448 | 1.44933 | 1.2816 | -0.22872 | 0.817714 | 0.74022 | 0.785169 | 20,240,901 |
A | 2003-11-30T00:00:00 | 1.50586 | 0.069075 | 0.19155 | 1.44963 | 1.2816 | -0.22426 | 0.804029 | 0.75866 | 0.799798 | 20,240,901 |
A | 2003-12-31T00:00:00 | 1.47849 | 0.058645 | 0.24712 | 1.43371 | 1.26615 | -0.21234 | 0.804491 | 0.73762 | 1.5873 | 20,240,901 |
A | 2004-01-31T00:00:00 | 1.47929 | 0.0593 | 0.24974 | 1.4353 | 1.26615 | -0.21314 | 0.805908 | 0.73721 | 1.605042 | 20,240,901 |
A | 2004-02-29T00:00:00 | 1.48234 | 0.05061 | 0.22452 | 1.43616 | 1.26615 | -0.21619 | 0.798407 | 0.75039 | 1.518925 | 20,240,901 |
A | 2004-03-31T00:00:00 | 1.47542 | 0.06083 | 0.42335 | 1.43208 | 1.25471 | -0.22071 | 0.84792 | 0.69325 | 1.707726 | 20,240,901 |
A | 2004-04-30T00:00:00 | 1.47655 | 0.076845 | 0.40794 | 1.43417 | 1.25471 | -0.22185 | 0.848876 | 0.68624 | 1.566915 | 20,240,901 |
A | 2004-05-31T00:00:00 | 1.47556 | 0.092935 | 0.23067 | 1.43335 | 1.25471 | -0.22085 | 0.808129 | 0.71992 | 1.672348 | 20,240,901 |
A | 2004-06-30T00:00:00 | 1.47376 | 0.07602 | 0.16713 | 1.43217 | 1.24683 | -0.22692 | 0.78727 | 0.74695 | 1.880766 | 20,240,901 |
A | 2004-07-31T00:00:00 | 1.48391 | 0.132435 | 0.20091 | 1.43781 | 1.24683 | -0.23707 | 0.813766 | 0.7097 | 1.303716 | 20,240,901 |
A | 2004-08-31T00:00:00 | 1.49709 | 0.115495 | 0.22541 | 1.44741 | 1.24683 | -0.25025 | 0.821351 | 0.71854 | 1.170033 | 20,240,901 |
A | 2004-09-30T00:00:00 | 1.46785 | 0.09526 | 0.31161 | 1.42885 | 1.24094 | -0.22691 | 0.825893 | 0.6932 | 3.604471 | 20,240,901 |
A | 2004-10-31T00:00:00 | 1.4661 | 0.092535 | 0.35334 | 1.4268 | 1.24094 | -0.22516 | 0.834694 | 0.68333 | 3.964161 | 20,240,901 |
A | 2004-11-30T00:00:00 | 1.46915 | 0.11285 | 0.36447 | 1.42719 | 1.24094 | -0.22822 | 0.843415 | 0.66836 | 3.440264 | 20,240,901 |
A | 2004-12-31T00:00:00 | 1.46699 | 0.088965 | 0.47054 | 1.42616 | 1.23984 | -0.22715 | 0.863164 | 0.65911 | 4.193984 | 20,240,901 |
A | 2005-01-31T00:00:00 | 1.4669 | 0.087615 | 0.48089 | 1.42764 | 1.23984 | -0.22706 | 0.865761 | 0.65831 | 4.124833 | 20,240,901 |
A | 2005-02-28T00:00:00 | 1.46606 | 0.057885 | 0.38067 | 1.42574 | 1.23984 | -0.22622 | 0.832589 | 0.70008 | 4.22591 | 20,240,901 |
A | 2005-03-31T00:00:00 | 1.46351 | 0.04368 | 0.23571 | 1.42432 | 1.23738 | -0.22613 | 0.791805 | 0.74303 | 4.035703 | 20,240,901 |
A | 2005-04-30T00:00:00 | 1.46389 | 0.048965 | 0.12014 | 1.42436 | 1.23738 | -0.22651 | 0.764339 | 0.77104 | 3.916874 | 20,240,901 |
A | 2005-05-31T00:00:00 | 1.46375 | 0.042805 | 0.11883 | 1.42413 | 1.23738 | -0.22637 | 0.762379 | 0.77493 | 4.01421 | 20,240,901 |
A | 2005-06-30T00:00:00 | 1.46411 | 0.04222 | 0.13224 | 1.42337 | 1.23666 | -0.22745 | 0.765485 | 0.77142 | 3.998564 | 20,240,901 |
A | 2005-07-31T00:00:00 | 1.46294 | 0.03809 | 0.11104 | 1.4233 | 1.23666 | -0.22628 | 0.758843 | 0.77944 | 4.085509 | 20,240,901 |
A | 2005-08-31T00:00:00 | 1.46475 | 0.03802 | 0.10731 | 1.42417 | 1.23666 | -0.22809 | 0.758562 | 0.78131 | 3.357808 | 20,240,901 |
A | 2005-09-30T00:00:00 | 1.46353 | 0.03459 | 0.07651 | 1.42384 | 1.2358 | -0.22772 | 0.749617 | 0.79163 | 4.007578 | 20,240,901 |
A | 2005-10-31T00:00:00 | 1.46335 | 0.037315 | 0.05628 | 1.42376 | 1.2358 | -0.22755 | 0.745176 | 0.79585 | 3.930876 | 20,240,901 |
A | 2005-11-30T00:00:00 | 1.46337 | 0.035895 | 0.04268 | 1.42368 | 1.2358 | -0.22757 | 0.741406 | 0.80063 | 3.999386 | 20,240,901 |
A | 2005-12-31T00:00:00 | 1.46377 | 0.04022 | 0.03651 | 1.42393 | 1.2358 | -0.22796 | 0.741107 | 0.80021 | 3.938081 | 20,240,901 |
A | 2006-01-31T00:00:00 | 1.46453 | 0.041255 | 0.06463 | 1.42483 | 1.24437 | -0.22017 | 0.748811 | 0.79181 | 3.39967 | 20,240,901 |
A | 2006-02-28T00:00:00 | 1.46468 | 0.04227 | 0.0337 | 1.42505 | 1.24437 | -0.22031 | 0.741425 | 0.80049 | 3.358664 | 20,240,901 |
A | 2006-03-31T00:00:00 | 1.46454 | 0.0246 | 0.02534 | 1.42508 | 1.24495 | -0.21958 | 0.73489 | 0.81286 | 2.354436 | 20,240,901 |
A | 2006-04-30T00:00:00 | 1.46667 | 0.020665 | 0.04553 | 1.42493 | 1.24495 | -0.22172 | 0.739449 | 0.80984 | 1.842174 | 20,240,901 |
A | 2006-05-31T00:00:00 | 1.46943 | 0.02421 | 0.0247 | 1.42639 | 1.24495 | -0.22448 | 0.736183 | 0.81509 | 1.546537 | 20,240,901 |
A | 2006-06-30T00:00:00 | 1.46362 | 0.02472 | 0.03198 | 1.42482 | 1.24123 | -0.22239 | 0.736285 | 0.8105 | 2.178551 | 20,240,901 |
A | 2006-07-31T00:00:00 | 1.46462 | 0.023855 | 0.05273 | 1.42543 | 1.24123 | -0.22339 | 0.741659 | 0.80545 | 1.946969 | 20,240,901 |
A | 2006-08-31T00:00:00 | 1.46356 | 0.020315 | 0.06424 | 1.42438 | 1.24123 | -0.22233 | 0.743124 | 0.80362 | 2.192429 | 20,240,901 |
A | 2006-09-30T00:00:00 | 1.46542 | 0.020785 | 0.05026 | 1.42572 | 1.24521 | -0.22021 | 0.740546 | 0.80826 | 1.97558 | 20,240,901 |
A | 2006-10-31T00:00:00 | 1.46508 | 0.024975 | 0.03933 | 1.42527 | 1.24521 | -0.21987 | 0.738664 | 0.80877 | 1.991222 | 20,240,901 |
A | 2006-11-30T00:00:00 | 1.46626 | 0.03202 | 0.06694 | 1.42571 | 1.24521 | -0.22105 | 0.747732 | 0.7972 | 1.823471 | 20,240,901 |
A | 2006-12-31T00:00:00 | 1.46825 | 0.028525 | 0.09909 | 1.42694 | 1.24498 | -0.22327 | 0.755701 | 0.79106 | 2.023676 | 20,240,901 |
A | 2007-01-31T00:00:00 | 1.46887 | 0.029065 | 0.12561 | 1.42662 | 1.24498 | -0.22389 | 0.762541 | 0.78349 | 1.847197 | 20,240,901 |
A | 2007-02-28T00:00:00 | 1.4687 | 0.03093 | 0.13189 | 1.42692 | 1.24498 | -0.22372 | 0.76461 | 0.78067 | 1.871659 | 20,240,901 |
A | 2007-03-31T00:00:00 | 1.46073 | 0.02531 | 0.17158 | 1.42168 | 1.2395 | -0.22123 | 0.769825 | 0.76969 | 4.398749 | 20,240,901 |
A | 2007-04-30T00:00:00 | 1.46068 | 0.020285 | 0.25717 | 1.42172 | 1.2395 | -0.22118 | 0.789964 | 0.75152 | 4.528051 | 20,240,901 |
A | 2007-05-31T00:00:00 | 1.46082 | 0.02217 | 0.18074 | 1.42169 | 1.2395 | -0.22132 | 0.771355 | 0.76932 | 4.421386 | 20,240,901 |
A | 2007-06-30T00:00:00 | 1.46023 | 0.02403 | 0.10159 | 1.42135 | 1.23662 | -0.22361 | 0.7518 | 0.7891 | 4.492113 | 20,240,901 |
A | 2007-07-31T00:00:00 | 1.46022 | 0.02389 | 0.10903 | 1.42143 | 1.23662 | -0.22359 | 0.753642 | 0.78715 | 4.458104 | 20,240,901 |
A | 2007-08-31T00:00:00 | 1.46117 | 0.02951 | 0.10482 | 1.42192 | 1.23662 | -0.22455 | 0.754355 | 0.78537 | 3.767254 | 20,240,901 |
A | 2007-09-30T00:00:00 | 1.46053 | 0.02228 | 0.11006 | 1.42145 | 1.23776 | -0.22277 | 0.75358 | 0.78794 | 4.517053 | 20,240,901 |
A | 2007-10-31T00:00:00 | 1.46071 | 0.02395 | 0.11825 | 1.42138 | 1.23776 | -0.22295 | 0.756072 | 0.78471 | 4.472479 | 20,240,901 |
A | 2007-11-30T00:00:00 | 1.461 | 0.029075 | 0.17398 | 1.42163 | 1.23776 | -0.22324 | 0.771421 | 0.76676 | 4.320961 | 20,240,901 |
A | 2007-12-31T00:00:00 | 1.46207 | 0.02983 | 0.14479 | 1.42171 | 1.23794 | -0.22413 | 0.7646 | 0.77441 | 4.273657 | 20,240,901 |
A | 2008-01-31T00:00:00 | 1.4625 | 0.036675 | 0.23405 | 1.42216 | 1.23794 | -0.22456 | 0.788846 | 0.74706 | 4.352735 | 20,240,901 |
A | 2008-02-29T00:00:00 | 1.46268 | 0.039975 | 0.35788 | 1.42248 | 1.23794 | -0.22474 | 0.820754 | 0.71572 | 4.445638 | 20,240,901 |
Bankruptcy Predictions
Data Notice: This dataset provides academic research access with a 6-month data lag. For real-time data access, please visit sov.ai to subscribe. For market insights and additional subscription options, check out our newsletter at blog.sov.ai.
from datasets import load_dataset
df_bankrupt = load_dataset("sovai/bankruptcy", split="train").to_pandas().set_index(["ticker","date"])
Monthly corporate bankruptcy predictions arrive the 2nd of every month.
Tutorials
are the best documentation — Corporate Bankruptcy Tutorial
Input Datasets | SEC Bankruptcies, Delistings, Market Data, Financial Statements |
Models Used | CNN, LightGBM, RocketModel, AutoEncoder |
Model Outputs | Calibrated Probabilities, Shapley Values |
Description
The model predicts the likelihood of bankruptcies in the next 6-months for US publicly listed companies using advanced machine learning models.
With an accuracy of around 89% and ROC-AUC of 85%, these models represent a large improvement over traditional methods of bankruptcy prediction for equity selection.
Advanced modeling techniques used in this dataset:
- The Boosting Model: Utilizes LightGBM technology, integrating both fundamental and market data for accurate predictions.
- The Convolutional Model: Employs a Convolutional Neural Network (CNN) for efficient pattern recognition in market trends.
- The Rocket Model: Specializes in time series data, using random convolutional kernels for effective classification and forecasting.
- The Encoder Model: Combines LightGBM with CNN autoencoders, enhancing feature engineering for more precise predictions.
- The Fundamental Model: Focuses solely on fundamental data via LightGBM, without extra architectural layers, for straightforward financial analysis.
Data Access
Monthly Probabilities
Specific Tickers
import sovai as sov
df_bankrupt = sov.data('bankruptcy', tickers=["MSFT","TSLA","META"])
Specific Dates
import sovai as sov
df_bankrupt = sov.data('bankruptcy', start_date="2017-01-03", tickers=["MSFT"])
Latest Data
import sovai as sov
df_bankrupt = sov.data('bankruptcy')
All Data
import sovai as sov
df_bankrupt = sov.data('bankruptcy', full_history=True)
Daily Probabilities
import sovai as sov
df_bankrupt = sov.data('bankruptcy/daily', tickers=["MSFT","TSLA","META"])
The daily probabilities are experimental, and have a very short history of just a couple of months.
Feature Importance (Shapleys)
import sovai as sov
df_importance = sov.data('bankruptcy/shapleys', tickers=["MSFT","TSLA","META"])
Feature Importance (Shapley Values) calculates the contribution of each input variable (features) such as Debt, Assets, and Revenue to predict bankruptcy risk.
Reports
Sorting and Filtering
import sovai as sov
sov.report("bankruptcy", report_type="ranking")
Filter the outputs based on the top by Sector, Marketcap, and Revenue and bankruptcy risk. You can also change ranking
to change
to investigate the month on month change.
sov.report("bankruptcy", report_type="sector-change")
Plots
Bankruptcy Comparison
import sovai as sov
sov.plot('bankruptcy', chart_type='compare')
Timed Feature Importance
import sovai as sov
df = sov.plot("bankruptcy", chart_type="shapley", tickers=["TSLA"])
Total Feature Importance
import sovai as sov
sov.plot("bankruptcy", chart_type="stack", tickers=["DDD"])
Bankruptcy and Returns
import sovai as sov
df= sov.plot("bankruptcy", chart_type="line", tickers=["DDD"])
PCA Statistical Similarity
import sovai as sov
df= sov.plot("bankruptcy", chart_type="line", tickers=["DDD"])
Correlation Similarity
import sovai as sov
sov.plot("bankruptcy", chart_type="similar", tickers=["DDD"])
Trend Similarity
import sovai as sov
sov.plot("bankruptcy", chart_type="facet", tickers=["DDD"])
Model Performance
Confusion Matrix
import sovai as sov
sov.plot("bankruptcy", chart_type="confusion_global")
Threshold Plots
import sovai as sov
sov.plot("bankruptcy", chart_type="classification_global")
Lift Curve
import sovai as sov
sov.plot("bankruptcy", chart_type="lift_global")
Global Explainability
import sovai as sov
sov.plot("bankruptcy", chart_type="time_global")
Computations
Leverage advanced computational tools for deeper analysis:
Distance Matrix:
sov.compute('distance-matrix', on="attribute", df=dataframe)
Assess the similarity between entities based on selected attributes.
Percentile Calculation:
sov.compute('percentile', on="attribute", df=dataframe)
Calculate the relative standing of values within a dataset.
Feature Mapping:
sov.compute('map-accounting-features', df=dataframe)
Map accounting features to standardized metrics.
PCA Calculation:
sov.compute('pca', df=dataframe)
Perform principal component analysis for dimensionality reduction.
For more advanced applications, see the tutotrial.
Data Dictionary
Name | Description | Type | Example |
---|---|---|---|
ticker | Stock ticker symbol. | TEXT | "TSLA" |
date | Record date. | DATE | 2023-09-30 |
probability_light | LightGBM Boosting Model prediction. | FLOAT | 1.46636 |
probability_convolution | CNN Model prediction for bankruptcies | FLOAT | 0.135975 |
probability_rocket | Rocket Model prediction for time series classification | FLOAT | 0.02514 |
probability_encoder | LightGBM and CNN autoencoders Model prediction. | FLOAT | 0.587817 |
probability_fundamental | Prediction using accounting data only. | FLOAT | 1.26148 |
probability | Average probability across models. | FLOAT | 0.553823 |
sans_market | Fundamental prediction adjusted for market predictions. | FLOAT | -0.20488 |
volatility | Variability of model predictions. | FLOAT | 0.62934 |
multiplier | Coefficient for model prediction calibration. | FLOAT | 1.951868 |
version | Model/data record version. | INT | 20240201 |
When sans_market
is positive, it means that the fundamentals show a larger predicted bankruptcy than what the market predicts (stock might go down in medium term) , when sans_market
is negative, the market might have overreacted, and predict a larger probability of bankruptcy than what the fundamentals suggest (stock might go up in medium term).
Use Cases
- Bankruptcy Prediction Analysis: Offer insights into predicted corporate bankruptcies and identify key factors, clarifying main drivers across different cycles.
- Variable Impact Breakdown: Analyze how each individual variable affects bankruptcy predictions, providing in-depth feature contribution insights.
- Temporal Feature Distribution Analysis: Reveal how variables contribute to predictions over time, emphasizing key features in forecasting models.
- Correlation Discovery: Identify stocks with similar bankruptcy probability trends, revealing correlated market behaviors.
- Probability Shift Overview: Showcase changes in bankruptcy probabilities among correlated stocks, providing a comprehensive market perspective.
- Sentiment Inversion Analysis: Convert bankruptcy predictions into positive sentiment indicators to gauge potential impacts on stock returns.
- Behavioral Similarity Mapping: Locate stocks with similar behaviors to a selected reference, based on bankruptcy trends and PCA feature analysis.
- Downloads last month
- 32