ticker
stringlengths
1
6
date
timestamp[us]
probability_light
float64
1.46
98.4
probability_convolution
float32
0
50
probability_rocket
float64
0
98.9
probability_encoder
float64
0.49
97.9
probability_fundamental
float64
1.23
99.5
sans_market
float64
-96.61
93.7
probability
float64
0.49
85.7
volatility
float64
0
50.1
multiplier
float64
0.07
52.7
version
int64
20.2M
20.2M
A
1999-11-30T00:00:00
1.48569
0.742845
1.48569
1.48569
1.23629
-0.2494
1.299979
0
2.331466
20,240,901
A
1999-12-31T00:00:00
1.48142
0.74071
1.48142
1.48142
1.23629
-0.24513
1.296243
0
2.892753
20,240,901
A
2000-01-31T00:00:00
1.48925
0.744625
1.48925
1.48925
1.23675
-0.2525
1.303094
0
2.111402
20,240,901
A
2000-02-29T00:00:00
1.48565
0.742825
1.48565
1.48565
1.23675
-0.2489
1.299944
0
2.290044
20,240,901
A
2000-03-31T00:00:00
1.47943
0.739715
1.47943
1.47943
1.236
-0.24342
1.294501
0
2.020291
20,240,901
A
2000-04-30T00:00:00
1.48314
0.74157
1.48314
1.48314
1.236
-0.24714
1.297747
0
1.787359
20,240,901
A
2000-05-31T00:00:00
1.48524
0.74262
1.48524
1.48524
1.236
-0.24923
1.299585
0
1.662852
20,240,901
A
2000-06-30T00:00:00
1.48632
0.74316
1.48632
1.48632
1.23875
-0.24757
1.30053
0
2.11458
20,240,901
A
2000-07-31T00:00:00
1.5269
0.76345
1.5269
1.5269
1.23875
-0.28815
1.336038
0
1.205571
20,240,901
A
2000-08-31T00:00:00
1.48657
0.743285
1.48657
1.48657
1.23875
-0.24782
1.300749
0
2.333391
20,240,901
A
2000-09-30T00:00:00
1.49923
0.749615
1.49923
1.49923
1.24006
-0.25918
1.311826
0
1.778024
20,240,901
A
2000-10-31T00:00:00
1.50451
0.752255
1.50451
1.50451
1.24006
-0.26446
1.316446
0
1.688358
20,240,901
A
2000-11-30T00:00:00
1.49781
0.748905
1.49781
1.49781
1.24006
-0.25775
1.310584
0
1.875263
20,240,901
A
2000-12-31T00:00:00
1.48324
0.74162
1.48324
1.48324
1.24006
-0.24319
1.297835
0
2.310713
20,240,901
A
2001-01-31T00:00:00
1.47619
0.738095
1.47619
1.47619
1.23914
-0.23704
1.291666
0
2.796178
20,240,901
A
2001-02-28T00:00:00
1.4814
0.7407
1.4814
1.4814
1.23914
-0.24226
1.296225
0
2.020836
20,240,901
A
2001-03-31T00:00:00
1.54395
0.771975
1.54395
1.54395
1.2486
-0.29535
1.350956
0
1.33532
20,240,901
A
2001-04-30T00:00:00
1.51187
0.755935
1.51187
1.51187
1.2486
-0.26327
1.322886
0
1.697357
20,240,901
A
2001-05-31T00:00:00
1.50374
0.75187
1.50374
1.50374
1.2486
-0.25514
1.315772
0
1.87408
20,240,901
A
2001-06-30T00:00:00
1.47666
0.73833
1.47666
1.47666
1.25155
-0.22511
1.292078
0
3.33646
20,240,901
A
2001-07-31T00:00:00
1.48917
0.744585
1.48917
1.48917
1.25155
-0.23762
1.303024
0
2.109067
20,240,901
A
2001-08-31T00:00:00
1.48287
0.741435
1.48287
1.48287
1.25155
-0.23132
1.297511
0
2.600223
20,240,901
A
2001-09-30T00:00:00
1.51719
0.758595
1.51719
1.51719
1.25524
-0.26196
1.327541
0
1.108964
20,240,901
A
2001-10-31T00:00:00
1.49178
0.42495
0.52054
1.44259
1.25524
-0.23655
0.969965
0.47149
1.38034
20,240,901
A
2001-11-30T00:00:00
1.4832
0.36722
0.29531
1.43843
1.25524
-0.22796
0.89604
0.5751
2.084444
20,240,901
A
2001-12-31T00:00:00
1.48249
0.395315
0.23405
1.4354
1.25524
-0.22725
0.886814
0.59219
1.916109
20,240,901
A
2002-01-31T00:00:00
1.49282
0.33021
0.12669
1.44226
1.25751
-0.2353
0.847995
0.65756
1.743267
20,240,901
A
2002-02-28T00:00:00
1.49581
0.363435
0.09477
1.44359
1.25507
-0.24074
0.849401
0.66392
1.41574
20,240,901
A
2002-03-31T00:00:00
1.51124
0.26705
0.14313
1.44477
1.27433
-0.23691
0.841547
0.67746
0.749254
20,240,901
A
2002-04-30T00:00:00
1.51806
0.33663
0.28552
1.44335
1.27433
-0.24373
0.89589
0.60016
0.762038
20,240,901
A
2002-05-31T00:00:00
1.53482
0.335735
0.17066
1.45182
1.2736
-0.26122
0.873259
0.65284
0.656403
20,240,901
A
2002-06-30T00:00:00
1.51383
0.38088
0.16405
1.44757
1.26897
-0.24487
0.876582
0.63685
0.832739
20,240,901
A
2002-07-31T00:00:00
1.58715
0.802665
0.17771
1.49071
1.26897
-0.31818
1.014559
0.6935
0.461262
20,240,901
A
2002-08-31T00:00:00
1.64787
0.83763
0.29614
1.54537
1.26897
-0.3789
1.081752
0.6657
0.333251
20,240,901
A
2002-09-30T00:00:00
1.55127
1.11804
0.38727
1.51815
1.28705
-0.26421
1.143682
0.7658
0.792029
20,240,901
A
2002-10-31T00:00:00
1.61963
1.22899
0.73838
1.5394
1.28705
-0.33257
1.2816
0.70287
0.513133
20,240,901
A
2002-11-30T00:00:00
1.63793
0.49109
0.53608
1.51236
1.28705
-0.35088
1.044365
0.5077
0.370445
20,240,901
A
2002-12-31T00:00:00
1.55823
0.6149
0.74955
1.47195
1.27877
-0.27945
1.098657
0.36291
0.802572
20,240,901
A
2003-01-31T00:00:00
1.56506
0.65188
0.44523
1.47849
1.27877
-0.28629
1.035165
0.51357
0.695073
20,240,901
A
2003-02-28T00:00:00
1.73753
1.27949
0.89175
1.5271
1.27877
-0.45875
1.358967
0.68814
0.354246
20,240,901
A
2003-03-31T00:00:00
1.52044
0.817585
1.78245
1.46391
1.2991
-0.22134
1.396096
0.14068
1.067254
20,240,901
A
2003-04-30T00:00:00
1.51136
0.525685
1.40821
1.45839
1.2991
-0.21226
1.225911
0.20828
0.979295
20,240,901
A
2003-05-31T00:00:00
1.50927
0.44366
0.79163
1.45735
1.2991
-0.21018
1.050477
0.37437
0.850355
20,240,901
A
2003-06-30T00:00:00
1.50576
0.26196
0.5359
1.44803
1.27468
-0.23109
0.937912
0.54727
0.95854
20,240,901
A
2003-07-31T00:00:00
1.50085
0.147805
0.25229
1.44185
1.27468
-0.22617
0.835699
0.69196
0.867384
20,240,901
A
2003-08-31T00:00:00
1.50053
0.12007
0.1961
1.44063
1.27468
-0.22585
0.814333
0.72374
0.857336
20,240,901
A
2003-09-30T00:00:00
1.51555
0.125515
0.25263
1.45092
1.2816
-0.23395
0.836154
0.71144
0.750931
20,240,901
A
2003-10-31T00:00:00
1.51032
0.086725
0.22448
1.44933
1.2816
-0.22872
0.817714
0.74022
0.785169
20,240,901
A
2003-11-30T00:00:00
1.50586
0.069075
0.19155
1.44963
1.2816
-0.22426
0.804029
0.75866
0.799798
20,240,901
A
2003-12-31T00:00:00
1.47849
0.058645
0.24712
1.43371
1.26615
-0.21234
0.804491
0.73762
1.5873
20,240,901
A
2004-01-31T00:00:00
1.47929
0.0593
0.24974
1.4353
1.26615
-0.21314
0.805908
0.73721
1.605042
20,240,901
A
2004-02-29T00:00:00
1.48234
0.05061
0.22452
1.43616
1.26615
-0.21619
0.798407
0.75039
1.518925
20,240,901
A
2004-03-31T00:00:00
1.47542
0.06083
0.42335
1.43208
1.25471
-0.22071
0.84792
0.69325
1.707726
20,240,901
A
2004-04-30T00:00:00
1.47655
0.076845
0.40794
1.43417
1.25471
-0.22185
0.848876
0.68624
1.566915
20,240,901
A
2004-05-31T00:00:00
1.47556
0.092935
0.23067
1.43335
1.25471
-0.22085
0.808129
0.71992
1.672348
20,240,901
A
2004-06-30T00:00:00
1.47376
0.07602
0.16713
1.43217
1.24683
-0.22692
0.78727
0.74695
1.880766
20,240,901
A
2004-07-31T00:00:00
1.48391
0.132435
0.20091
1.43781
1.24683
-0.23707
0.813766
0.7097
1.303716
20,240,901
A
2004-08-31T00:00:00
1.49709
0.115495
0.22541
1.44741
1.24683
-0.25025
0.821351
0.71854
1.170033
20,240,901
A
2004-09-30T00:00:00
1.46785
0.09526
0.31161
1.42885
1.24094
-0.22691
0.825893
0.6932
3.604471
20,240,901
A
2004-10-31T00:00:00
1.4661
0.092535
0.35334
1.4268
1.24094
-0.22516
0.834694
0.68333
3.964161
20,240,901
A
2004-11-30T00:00:00
1.46915
0.11285
0.36447
1.42719
1.24094
-0.22822
0.843415
0.66836
3.440264
20,240,901
A
2004-12-31T00:00:00
1.46699
0.088965
0.47054
1.42616
1.23984
-0.22715
0.863164
0.65911
4.193984
20,240,901
A
2005-01-31T00:00:00
1.4669
0.087615
0.48089
1.42764
1.23984
-0.22706
0.865761
0.65831
4.124833
20,240,901
A
2005-02-28T00:00:00
1.46606
0.057885
0.38067
1.42574
1.23984
-0.22622
0.832589
0.70008
4.22591
20,240,901
A
2005-03-31T00:00:00
1.46351
0.04368
0.23571
1.42432
1.23738
-0.22613
0.791805
0.74303
4.035703
20,240,901
A
2005-04-30T00:00:00
1.46389
0.048965
0.12014
1.42436
1.23738
-0.22651
0.764339
0.77104
3.916874
20,240,901
A
2005-05-31T00:00:00
1.46375
0.042805
0.11883
1.42413
1.23738
-0.22637
0.762379
0.77493
4.01421
20,240,901
A
2005-06-30T00:00:00
1.46411
0.04222
0.13224
1.42337
1.23666
-0.22745
0.765485
0.77142
3.998564
20,240,901
A
2005-07-31T00:00:00
1.46294
0.03809
0.11104
1.4233
1.23666
-0.22628
0.758843
0.77944
4.085509
20,240,901
A
2005-08-31T00:00:00
1.46475
0.03802
0.10731
1.42417
1.23666
-0.22809
0.758562
0.78131
3.357808
20,240,901
A
2005-09-30T00:00:00
1.46353
0.03459
0.07651
1.42384
1.2358
-0.22772
0.749617
0.79163
4.007578
20,240,901
A
2005-10-31T00:00:00
1.46335
0.037315
0.05628
1.42376
1.2358
-0.22755
0.745176
0.79585
3.930876
20,240,901
A
2005-11-30T00:00:00
1.46337
0.035895
0.04268
1.42368
1.2358
-0.22757
0.741406
0.80063
3.999386
20,240,901
A
2005-12-31T00:00:00
1.46377
0.04022
0.03651
1.42393
1.2358
-0.22796
0.741107
0.80021
3.938081
20,240,901
A
2006-01-31T00:00:00
1.46453
0.041255
0.06463
1.42483
1.24437
-0.22017
0.748811
0.79181
3.39967
20,240,901
A
2006-02-28T00:00:00
1.46468
0.04227
0.0337
1.42505
1.24437
-0.22031
0.741425
0.80049
3.358664
20,240,901
A
2006-03-31T00:00:00
1.46454
0.0246
0.02534
1.42508
1.24495
-0.21958
0.73489
0.81286
2.354436
20,240,901
A
2006-04-30T00:00:00
1.46667
0.020665
0.04553
1.42493
1.24495
-0.22172
0.739449
0.80984
1.842174
20,240,901
A
2006-05-31T00:00:00
1.46943
0.02421
0.0247
1.42639
1.24495
-0.22448
0.736183
0.81509
1.546537
20,240,901
A
2006-06-30T00:00:00
1.46362
0.02472
0.03198
1.42482
1.24123
-0.22239
0.736285
0.8105
2.178551
20,240,901
A
2006-07-31T00:00:00
1.46462
0.023855
0.05273
1.42543
1.24123
-0.22339
0.741659
0.80545
1.946969
20,240,901
A
2006-08-31T00:00:00
1.46356
0.020315
0.06424
1.42438
1.24123
-0.22233
0.743124
0.80362
2.192429
20,240,901
A
2006-09-30T00:00:00
1.46542
0.020785
0.05026
1.42572
1.24521
-0.22021
0.740546
0.80826
1.97558
20,240,901
A
2006-10-31T00:00:00
1.46508
0.024975
0.03933
1.42527
1.24521
-0.21987
0.738664
0.80877
1.991222
20,240,901
A
2006-11-30T00:00:00
1.46626
0.03202
0.06694
1.42571
1.24521
-0.22105
0.747732
0.7972
1.823471
20,240,901
A
2006-12-31T00:00:00
1.46825
0.028525
0.09909
1.42694
1.24498
-0.22327
0.755701
0.79106
2.023676
20,240,901
A
2007-01-31T00:00:00
1.46887
0.029065
0.12561
1.42662
1.24498
-0.22389
0.762541
0.78349
1.847197
20,240,901
A
2007-02-28T00:00:00
1.4687
0.03093
0.13189
1.42692
1.24498
-0.22372
0.76461
0.78067
1.871659
20,240,901
A
2007-03-31T00:00:00
1.46073
0.02531
0.17158
1.42168
1.2395
-0.22123
0.769825
0.76969
4.398749
20,240,901
A
2007-04-30T00:00:00
1.46068
0.020285
0.25717
1.42172
1.2395
-0.22118
0.789964
0.75152
4.528051
20,240,901
A
2007-05-31T00:00:00
1.46082
0.02217
0.18074
1.42169
1.2395
-0.22132
0.771355
0.76932
4.421386
20,240,901
A
2007-06-30T00:00:00
1.46023
0.02403
0.10159
1.42135
1.23662
-0.22361
0.7518
0.7891
4.492113
20,240,901
A
2007-07-31T00:00:00
1.46022
0.02389
0.10903
1.42143
1.23662
-0.22359
0.753642
0.78715
4.458104
20,240,901
A
2007-08-31T00:00:00
1.46117
0.02951
0.10482
1.42192
1.23662
-0.22455
0.754355
0.78537
3.767254
20,240,901
A
2007-09-30T00:00:00
1.46053
0.02228
0.11006
1.42145
1.23776
-0.22277
0.75358
0.78794
4.517053
20,240,901
A
2007-10-31T00:00:00
1.46071
0.02395
0.11825
1.42138
1.23776
-0.22295
0.756072
0.78471
4.472479
20,240,901
A
2007-11-30T00:00:00
1.461
0.029075
0.17398
1.42163
1.23776
-0.22324
0.771421
0.76676
4.320961
20,240,901
A
2007-12-31T00:00:00
1.46207
0.02983
0.14479
1.42171
1.23794
-0.22413
0.7646
0.77441
4.273657
20,240,901
A
2008-01-31T00:00:00
1.4625
0.036675
0.23405
1.42216
1.23794
-0.22456
0.788846
0.74706
4.352735
20,240,901
A
2008-02-29T00:00:00
1.46268
0.039975
0.35788
1.42248
1.23794
-0.22474
0.820754
0.71572
4.445638
20,240,901

Bankruptcy Predictions

Data Notice: This dataset provides academic research access with a 6-month data lag. For real-time data access, please visit sov.ai to subscribe. For market insights and additional subscription options, check out our newsletter at blog.sov.ai.

from datasets import load_dataset
df_bankrupt = load_dataset("sovai/bankruptcy", split="train").to_pandas().set_index(["ticker","date"])

Monthly corporate bankruptcy predictions arrive the 2nd of every month.

Tutorials are the best documentation — Corporate Bankruptcy Tutorial

Input DatasetsSEC Bankruptcies, Delistings, Market Data, Financial Statements
Models UsedCNN, LightGBM, RocketModel, AutoEncoder
Model OutputsCalibrated Probabilities, Shapley Values

Description

The model predicts the likelihood of bankruptcies in the next 6-months for US publicly listed companies using advanced machine learning models.

With an accuracy of around 89% and ROC-AUC of 85%, these models represent a large improvement over traditional methods of bankruptcy prediction for equity selection.

Advanced modeling techniques used in this dataset:

  • The Boosting Model: Utilizes LightGBM technology, integrating both fundamental and market data for accurate predictions.
  • The Convolutional Model: Employs a Convolutional Neural Network (CNN) for efficient pattern recognition in market trends.
  • The Rocket Model: Specializes in time series data, using random convolutional kernels for effective classification and forecasting.
  • The Encoder Model: Combines LightGBM with CNN autoencoders, enhancing feature engineering for more precise predictions.
  • The Fundamental Model: Focuses solely on fundamental data via LightGBM, without extra architectural layers, for straightforward financial analysis.

Data Access

Monthly Probabilities

Specific Tickers

import sovai as sov
df_bankrupt = sov.data('bankruptcy', tickers=["MSFT","TSLA","META"])

Specific Dates

import sovai as sov
df_bankrupt = sov.data('bankruptcy', start_date="2017-01-03", tickers=["MSFT"])

Latest Data

import sovai as sov
df_bankrupt = sov.data('bankruptcy')

All Data

import sovai as sov
df_bankrupt = sov.data('bankruptcy', full_history=True)

Daily Probabilities

import sovai as sov
df_bankrupt = sov.data('bankruptcy/daily', tickers=["MSFT","TSLA","META"])

The daily probabilities are experimental, and have a very short history of just a couple of months.

Feature Importance (Shapleys)

import sovai as sov
df_importance = sov.data('bankruptcy/shapleys', tickers=["MSFT","TSLA","META"])

Feature Importance (Shapley Values) calculates the contribution of each input variable (features) such as Debt, Assets, and Revenue to predict bankruptcy risk.

Reports

Sorting and Filtering

import sovai as sov
sov.report("bankruptcy", report_type="ranking")

Filter the outputs based on the top by Sector, Marketcap, and Revenue and bankruptcy risk. You can also change ranking to change to investigate the month on month change.

sov.report("bankruptcy", report_type="sector-change")

Plots

Bankruptcy Comparison

import sovai as sov
sov.plot('bankruptcy', chart_type='compare')

Timed Feature Importance

import sovai as sov
df = sov.plot("bankruptcy", chart_type="shapley", tickers=["TSLA"])

Total Feature Importance

import sovai as sov
sov.plot("bankruptcy", chart_type="stack", tickers=["DDD"])

Bankruptcy and Returns

import sovai as sov
df= sov.plot("bankruptcy", chart_type="line", tickers=["DDD"])

PCA Statistical Similarity

import sovai as sov
df= sov.plot("bankruptcy", chart_type="line", tickers=["DDD"])

Correlation Similarity

import sovai as sov
sov.plot("bankruptcy", chart_type="similar", tickers=["DDD"])

Trend Similarity

import sovai as sov
sov.plot("bankruptcy", chart_type="facet", tickers=["DDD"])

Model Performance

Confusion Matrix

import sovai as sov
sov.plot("bankruptcy", chart_type="confusion_global")

Threshold Plots

import sovai as sov
sov.plot("bankruptcy", chart_type="classification_global")

Lift Curve

import sovai as sov
sov.plot("bankruptcy", chart_type="lift_global")

Global Explainability

import sovai as sov
sov.plot("bankruptcy", chart_type="time_global")

Computations

Leverage advanced computational tools for deeper analysis:

  • Distance Matrix:

    sov.compute('distance-matrix', on="attribute", df=dataframe)
    

    Assess the similarity between entities based on selected attributes.

  • Percentile Calculation:

    sov.compute('percentile', on="attribute", df=dataframe)
    

    Calculate the relative standing of values within a dataset.

  • Feature Mapping:

    sov.compute('map-accounting-features', df=dataframe)
    

    Map accounting features to standardized metrics.

  • PCA Calculation:

    sov.compute('pca', df=dataframe)
    

    Perform principal component analysis for dimensionality reduction.

For more advanced applications, see the tutotrial.

Data Dictionary

NameDescriptionTypeExample
tickerStock ticker symbol.TEXT"TSLA"
dateRecord date.DATE2023-09-30
probability_lightLightGBM Boosting Model prediction.FLOAT1.46636
probability_convolutionCNN Model prediction for bankruptciesFLOAT0.135975
probability_rocketRocket Model prediction for time series classificationFLOAT0.02514
probability_encoderLightGBM and CNN autoencoders Model prediction.FLOAT0.587817
probability_fundamentalPrediction using accounting data only.FLOAT1.26148
probabilityAverage probability across models.FLOAT0.553823
sans_marketFundamental prediction adjusted for market predictions.FLOAT-0.20488
volatilityVariability of model predictions.FLOAT0.62934
multiplierCoefficient for model prediction calibration.FLOAT1.951868
versionModel/data record version.INT20240201

When sans_market is positive, it means that the fundamentals show a larger predicted bankruptcy than what the market predicts (stock might go down in medium term) , when sans_market is negative, the market might have overreacted, and predict a larger probability of bankruptcy than what the fundamentals suggest (stock might go up in medium term).

Use Cases

  1. Bankruptcy Prediction Analysis: Offer insights into predicted corporate bankruptcies and identify key factors, clarifying main drivers across different cycles.
  2. Variable Impact Breakdown: Analyze how each individual variable affects bankruptcy predictions, providing in-depth feature contribution insights.
  3. Temporal Feature Distribution Analysis: Reveal how variables contribute to predictions over time, emphasizing key features in forecasting models.
  4. Correlation Discovery: Identify stocks with similar bankruptcy probability trends, revealing correlated market behaviors.
  5. Probability Shift Overview: Showcase changes in bankruptcy probabilities among correlated stocks, providing a comprehensive market perspective.
  6. Sentiment Inversion Analysis: Convert bankruptcy predictions into positive sentiment indicators to gauge potential impacts on stock returns.
  7. Behavioral Similarity Mapping: Locate stocks with similar behaviors to a selected reference, based on bankruptcy trends and PCA feature analysis.
Downloads last month
32
Edit dataset card