Datasets:
File size: 6,984 Bytes
fb5267f 05992ae fb5267f 32e763a fb5267f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import json
import os
import math
import requests
from io import BytesIO
from zipfile import ZipFile
from urllib.request import urlopen
import pandas as pd
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
_LILA_SAS_URLS = pd.read_csv("https://lila.science/wp-content/uploads/2020/03/lila_sas_urls.txt")
_LILA_SAS_URLS.rename(columns={"# name": "name"}, inplace=True)
# How do I make these point to the particular commit ID?
_LILA_URLS = {
"Caltech Camera Traps": "https://huggingface.co/datasets/NimaBoscarino/LILA/resolve/main/data/Caltech_Camera_Traps.jsonl",
"ENA24": "https://huggingface.co/datasets/NimaBoscarino/LILA/resolve/main/data/ENA24.jsonl",
"Missouri Camera Traps": "",
"NACTI": "",
"WCS Camera Traps": "",
"Wellington Camera Traps": "",
"Island Conservation Camera Traps": "",
"Channel Islands Camera Traps": "",
"Idaho Camera Traps": "",
"Snapshot Serengeti": "",
"Snapshot Karoo": "",
"Snapshot Kgalagadi": "",
"Snapshot Enonkishu": "",
"Snapshot Camdeboo": "",
"Snapshot Mountain Zebra": "",
"Snapshot Kruger": "",
"SWG Camera Traps": "",
"Orinoquia Camera Traps": "",
}
# TODO: Just to make the Dataset viewer on the Hub work
DEFAULT_CONFIG_NAME = "Caltech Camera Traps"
class LILAConfig(datasets.BuilderConfig):
"""Builder Config for LILA"""
def __init__(self, image_base_url, metadata_url, **kwargs):
"""BuilderConfig for LILA.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(LILAConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.image_base_url = image_base_url
self.metadata_url = metadata_url
class LILA(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
LILAConfig(
name=row.name,
# description="TODO: Description",
image_base_url=row.image_base_url,
metadata_url=_LILA_URLS[row.name]
) for row in _LILA_SAS_URLS.itertuples()
]
def _get_features(self) -> datasets.Features:
# TODO: Use ClassLabel for categories...
# TODO: Deal with 404s -> In my manual preprocessing, or in the datasets library?
if self.config.name == 'Caltech Camera Traps':
return datasets.Features({
"id": datasets.Value("string"), "file_name": datasets.Value("string"),
"width": datasets.Value("int32"), "height": datasets.Value("int32"),
"seq_num_frames": datasets.Value("int32"),
"date_captured": datasets.Value("date32"),
"seq_id": datasets.Value("string"),
"location": datasets.Value("string"),
"rights_holder": datasets.Value("string"),
"frame_num": datasets.Value("int32"),
"annotations": datasets.Sequence({
"id": datasets.Value("string"),
"category_id": datasets.Value("int32"),
}),
"bboxes": datasets.Sequence({
"id": datasets.Value("string"),
"category_id": datasets.Value("int32"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
}),
"image": datasets.Image(decode=False),
})
elif self.config.name == 'ENA24':
return datasets.Features({
"id": datasets.Value("string"), "file_name": datasets.Value("string"),
"width": datasets.Value("int32"), "height": datasets.Value("int32"),
"annotations": datasets.Sequence({
"id": datasets.Value("string"),
"category_id": datasets.Value("int32"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
}),
"image": datasets.Image(decode=False),
})
def _info(self):
features = self._get_features()
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download_and_extract(self.config.metadata_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": archive_path,
"split": "train",
},
),
]
def _generate_examples(self, filepath, split):
with open(filepath) as f:
for line in f:
example = json.loads(line)
image_url = f"{self.config.image_base_url}/{example['file_name']}"
yield example["id"], {
**example,
"image": image_url
} |