Datasets:
File size: 6,472 Bytes
f9b841a 49f9a08 f9b841a 49f9a08 b4c2d13 f9b841a b4c2d13 f9b841a 49f9a08 f9b841a 49f9a08 f9b841a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- zh
license:
- other
multilinguality:
- monolingual
paperswithcode_id: personaldialog
pretty_name: "PersonalDialog"
size_categories:
- 10M<n<100M
source_datasets:
- original
task_categories:
- conversational
task_ids:
- dialogue-generation
---
# Dataset Card for PersonalDialog
## Table of Contents
- [Dataset Card for PersonalDialog](#dataset-card-for-personaldialog)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://www.zhengyinhe.com/datasets/
- **Repository:** https://github.com/silverriver/PersonalDilaog
- **Paper:** https://arxiv.org/abs/1901.09672
### Dataset Summary
The PersonalDialog dataset is a large-scale multi-turn Chinese dialogue dataset containing various traits from a large number of speakers.
We are releasing about 5M sessions of carefully filtered dialogues.
Each utterance in PersonalDialog is associated with a speaker marked with traits like Gender, Location, Interest Tags.
### Supported Tasks and Leaderboards
- dialogue-generation: The dataset can be used to train a model for generating dialogue responses.
- response-retrieval: The dataset can be used to train a reranker model that can be used to implement a retrieval-based dialogue model.
### Languages
PersonalDialog is in Chinese
PersonalDialog中的对话是中文的
## Dataset Structure
### Data Instances
`train` split:
```json
{
"dialog": ["那么 晚", "加班 了 刚 到 家 呀 !", "吃饭 了 么", "吃 过 了 !"],
"profile": [
{
"tag": ["间歇性神经病", "爱笑的疯子", "他们说我犀利", "爱做梦", "自由", "旅游", "学生", "双子座", "好性格"],
"loc": "福建 厦门", "gender": "male"
}, {
"tag": ["设计师", "健康养生", "热爱生活", "善良", "宅", "音樂", "时尚"],
"loc": "山东 济南", "gender": "male"
}
],
"uid": [0, 1, 0, 1],
}
```
`dev` and `test` split:
```json
{
"dialog": ["没 人性 啊 !", "可以 来 组织 啊", "来 上海 陪姐 打 ?"],
"profile": [
{"tag": [""], "loc": "上海 浦东新区", "gender": "female"},
{"tag": ["嘉庚", "keele", "leicester", "UK", "泉州五中"], "loc": "福建 泉州", "gender": "male"},
],
"uid": [0, 1, 0],
"responder_profile": {"tag": ["嘉庚", "keele", "leicester", "UK", "泉州五中"], "loc": "福建 泉州", "gender": "male"},
"golden_response": "吴经理 派车来 小 泉州 接 么 ?",
"is_biased": true,
}
```
### Data Fields
- `dialog` (list of strings): List of utterances consisting of a dialogue.
- `profile` (list of dicts): List of profiles associated with each speaker.
- `tag` (list of strings): List of tags associated with each speaker.
- `loc` (string): Location of each speaker.
- `gender` (string): Gender of each speaker.
- `uid` (list of int): Speaker id for each utterance in the dialogue.
- `responder_profile` (dict): Profile of the responder. (Only available in `dev` and `test` split)
- `golden_response` (str): Response of the responder. (Only available in `dev` and `test` split)
- `id_biased` (bool): Whether the dialogue is guranteed to be persona related or not. (Only available in `dev` and `test` split)
### Data Splits
|train|valid|test|
|---:|---:|---:|
|5,438,165 | 10,521 | 10,523 |
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
other-weibo
This dataset is collected from Weibo.
You can refer to the [detailed policy](https://weibo.com/signup/v5/privacy) required to use this dataset.
Please restrict the usage of this dataset to non-commerical purposes.
### Citation Information
```bibtex
@article{zheng2019personalized,
title = {Personalized dialogue generation with diversified traits},
author = {Zheng, Yinhe and Chen, Guanyi and Huang, Minlie and Liu, Song and Zhu, Xuan},
journal = {arXiv preprint arXiv:1901.09672},
year = {2019}
}
@inproceedings{zheng2020pre,
title = {A pre-training based personalized dialogue generation model with persona-sparse data},
author = {Zheng, Yinhe and Zhang, Rongsheng and Huang, Minlie and Mao, Xiaoxi},
booktitle = {Proceedings of the AAAI Conference on Artificial Intelligence},
volume = {34},
number = {05},
pages = {9693--9700},
year = {2020}
}
```
### Contributions
Thanks to [Yinhe Zheng](https://github.com/silverriver) for adding this dataset.
|