File size: 6,744 Bytes
dd29e5c
 
c4e6b1a
 
 
dd29e5c
 
314aa33
c4e6b1a
 
314aa33
 
dd29e5c
c4e6b1a
 
 
dd29e5c
c4e6b1a
 
 
dd29e5c
 
 
c4e6b1a
 
 
dd29e5c
c4e6b1a
 
fbd3251
c4e6b1a
 
 
 
 
0d76635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd29e5c
 
 
 
 
 
 
fbd3251
dd29e5c
 
 
fbd3251
 
dd29e5c
 
 
 
 
 
 
 
 
 
 
 
 
ca0b2b5
dd29e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca0b2b5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
---
annotations_creators:
- expert-generated
- found
- no-annotation
language_creators:
- found
language:
- chr
- en
license:
- other
multilinguality:
- monolingual
- multilingual
- translation
size_categories:
- 100K<n<1M
- 10K<n<100K
- 1K<n<10K
source_datasets:
- original
task_categories:
- fill-mask
- text-generation
- translation
task_ids:
- language-modeling
- masked-language-modeling
paperswithcode_id: chren
configs:
- monolingual
- monolingual_raw
- parallel
- parallel_raw
dataset_info:
- config_name: monolingual_raw
  features:
  - name: text_sentence
    dtype: string
  - name: text_title
    dtype: string
  - name: speaker
    dtype: string
  - name: date
    dtype: int32
  - name: type
    dtype: string
  - name: dialect
    dtype: string
  splits:
  - name: full
    num_bytes: 1210828
    num_examples: 5210
  download_size: 28899321
  dataset_size: 1210828
- config_name: parallel_raw
  features:
  - name: line_number
    dtype: string
  - name: sentence_pair
    dtype:
      translation:
        languages:
        - en
        - chr
  - name: text_title
    dtype: string
  - name: speaker
    dtype: string
  - name: date
    dtype: int32
  - name: type
    dtype: string
  - name: dialect
    dtype: string
  splits:
  - name: full
    num_bytes: 5012923
    num_examples: 14151
  download_size: 28899321
  dataset_size: 5012923
- config_name: monolingual
  features:
  - name: sentence
    dtype: string
  splits:
  - name: chr
    num_bytes: 882848
    num_examples: 5210
  - name: en5000
    num_bytes: 615295
    num_examples: 5000
  - name: en10000
    num_bytes: 1211645
    num_examples: 10000
  - name: en20000
    num_bytes: 2432378
    num_examples: 20000
  - name: en50000
    num_bytes: 6065780
    num_examples: 49999
  - name: en100000
    num_bytes: 12130564
    num_examples: 100000
  download_size: 28899321
  dataset_size: 23338510
- config_name: parallel
  features:
  - name: sentence_pair
    dtype:
      translation:
        languages:
        - en
        - chr
  splits:
  - name: train
    num_bytes: 3089658
    num_examples: 11639
  - name: dev
    num_bytes: 260409
    num_examples: 1000
  - name: out_dev
    num_bytes: 78134
    num_examples: 256
  - name: test
    num_bytes: 264603
    num_examples: 1000
  - name: out_test
    num_bytes: 80967
    num_examples: 256
  download_size: 28899321
  dataset_size: 3773771
---

# Dataset Card for ChrEn

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository:** [Github repository for ChrEn](https://github.com/ZhangShiyue/ChrEn)
- **Paper:** [ChrEn: Cherokee-English Machine Translation for Endangered Language Revitalization](https://arxiv.org/abs/2010.04791)
- **Point of Contact:** [benfrey@email.unc.edu](benfrey@email.unc.edu)

### Dataset Summary

ChrEn is a Cherokee-English parallel dataset to facilitate machine translation research between Cherokee and English.
ChrEn is extremely low-resource contains 14k sentence pairs in total, split in ways that facilitate both in-domain and out-of-domain evaluation.
ChrEn also contains 5k Cherokee monolingual data to enable semi-supervised learning.

### Supported Tasks and Leaderboards

The dataset is intended to use for `machine-translation` between Enlish (`en`) and Cherokee (`chr`).

### Languages

The dataset contains Enlish (`en`) and Cherokee (`chr`) text. The data encompasses both existing dialects of Cherokee: the Overhill dialect, mostly spoken in Oklahoma (OK), and the Middle dialect, mostly used in North Carolina (NC).

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

[More Information Needed]

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

Many of the source texts were translations of English materials, which means that the Cherokee structures may not be 100% natural in terms of what a speaker might spontaneously produce. Each text was translated by people who speak Cherokee as the first language, which means there is a high probability of grammaticality. These data were originally available in PDF version. We apply the Optical Character Recognition (OCR) via Tesseract OCR engine to extract the Cherokee and English text.

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

The sentences were manually aligned by Dr. Benjamin Frey a proficient second-language speaker of Cherokee, who also fixed the errors introduced by OCR. This process is time-consuming and took several months.

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

The dataset was gathered and annotated by Shiyue Zhang, Benjamin Frey, and Mohit Bansal at UNC Chapel Hill.

### Licensing Information

The copyright of the data belongs to original book/article authors or translators (hence, used for research purpose; and please contact Dr. Benjamin Frey for other copyright questions).

### Citation Information

```
@inproceedings{zhang2020chren,
  title={ChrEn: Cherokee-English Machine Translation for Endangered Language Revitalization},
  author={Zhang, Shiyue and Frey, Benjamin and Bansal, Mohit},
  booktitle={EMNLP2020},
  year={2020}
}
```

### Contributions

Thanks to [@yjernite](https://github.com/yjernite), [@lhoestq](https://github.com/lhoestq) for adding this dataset.