Datasets:
File size: 1,619 Bytes
6cdf09c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import os
os.chdir('D:/Machine Learning/SLM-Project/')
import requests
from bs4 import BeautifulSoup
from tqdm import tqdm
class BritannicaUrls:
def __init__(self, search_queries, max_limit):
self.max_limit = max_limit
self.search_queries = search_queries
self.headers = {'User-Agent': "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/42.0.2311.135 Safari/537.36 Edge/12.246"}
def build_url(self, query, pageNo):
formattedQuery = '%20'.join(query.split(' '))
url = f"https://www.britannica.com/search?query={formattedQuery}&page={pageNo}"
return url
def get_target_url(self, targets):
r = requests.get(targets, headers=self.headers)
list_url = []
if r.status_code == 200:
html_content = r.content
soup = BeautifulSoup(html_content, 'html.parser')
fetched_urls = soup.find_all('a', attrs={'class': 'font-weight-bold font-18'})
list_url.extend([url.get('href') for url in fetched_urls])
return list_url
else:
print(f"skipping this {targets}")
def generate_urls(self, progress_bar=None):
page_urls = []
total_iterations = len(self.search_queries) * self.max_limit
current_iteration = 0
for query in self.search_queries:
pageNo = 1
for i in range(self.max_limit):
target_url = self.build_url(query, pageNo)
pageNo += 1
new_url = self.get_target_url(target_url)
page_urls.extend(new_url)
# Update the progress bar
current_iteration += 1
if progress_bar:
progress_bar.update(1)
return page_urls |