Datasets:
File size: 4,225 Bytes
b0d3b0f a2a9cc2 b0d3b0f a2a9cc2 b0d3b0f a2a9cc2 b0aa839 a2a9cc2 f9a1893 a2a9cc2 d4c2382 a2a9cc2 d4c2382 a2a9cc2 bd03483 a2a9cc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
annotations_creators:
- shibing624
language_creators:
- liuhuanyong
language:
- zh
license: cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<20M
source_datasets:
- https://github.com/liuhuanyong/ChineseTextualInference/
task_categories:
- text-classification
task_ids:
- natural-language-inference
- semantic-similarity-scoring
- text-scoring
paperswithcode_id: snli
pretty_name: Stanford Natural Language Inference
---
# Dataset Card for SNLI_zh
## Dataset Description
- **Repository:** [Chinese NLI dataset](https://github.com/shibing624/text2vec)
- **Dataset:** [train data from ChineseTextualInference](https://github.com/liuhuanyong/ChineseTextualInference/)
- **Size of downloaded dataset files:** 54 MB
- **Total amount of disk used:** 54 MB
### Dataset Summary
中文SNLI和MultiNLI数据集,翻译自英文[SNLI](https://huggingface.co/datasets/snli)和[MultiNLI](https://huggingface.co/datasets/multi_nli)
![img](https://huggingface.co/datasets/shibing624/snli-zh/resolve/main/project_route.png)
### Supported Tasks and Leaderboards
Supported Tasks: 支持中文文本匹配任务,文本相似度计算等相关任务。
中文匹配任务的结果目前在顶会paper上出现较少,我罗列一个我自己训练的结果:
**Leaderboard:** [NLI_zh leaderboard](https://github.com/shibing624/text2vec)
### Languages
数据集均是简体中文文本。
## Dataset Structure
### Data Instances
An example of 'train' looks as follows.
```
sentence1 sentence2 gold_label
是的,我想一个洞穴也会有这样的问题 我认为洞穴可能会有更严重的问题。 neutral
几周前我带他和一个朋友去看幼儿园警察 我还没看过幼儿园警察,但他看了。 contradiction
航空旅行的扩张开始了大众旅游的时代,希腊和爱琴海群岛成为北欧人逃离潮湿凉爽的夏天的令人兴奋的目的地。 航空旅行的扩大开始了许多旅游业的发展。 entailment
```
### Data Fields
The data fields are the same among all splits.
- `sentence1`: a `string` feature.
- `sentence2`: a `string` feature.
- `label`: a classification label, with possible values including entailment(0), neutral(1), contradiction(2). 注意:此数据集0表示相似,2表示不相似。
-
### Data Splits
after remove None and len(text) < 1 data:
```shell
$ wc -l ChineseTextualInference-train.txt
419402 total
```
### Data Length
![len](https://huggingface.co/datasets/shibing624/snli-zh/resolve/main/length.png)
## Dataset Creation
### Curation Rationale
作为中文SNLI(natural langauge inference)数据集,这里把这个数据集上传到huggingface的datasets,方便大家使用。
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
数据集的版权归原作者所有,使用各数据集时请尊重原数据集的版权。
@inproceedings{snli:emnlp2015,
Author = {Bowman, Samuel R. and Angeli, Gabor and Potts, Christopher, and Manning, Christopher D.},
Booktitle = {Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
Publisher = {Association for Computational Linguistics},
Title = {A large annotated corpus for learning natural language inference},
Year = {2015}
}
### Annotations
#### Annotation process
#### Who are the annotators?
原作者。
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
This dataset was developed as a benchmark for evaluating representational systems for text, especially including those induced by representation learning methods, in the task of predicting truth conditions in a given context.
Systems that are successful at such a task may be more successful in modeling semantic representations.
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
- [liuhuanyong](https://github.com/liuhuanyong/ChineseTextualInference/)翻译成中文
- [shibing624](https://github.com/shibing624) 上传到huggingface的datasets
### Licensing Information
用于学术研究。
### Contributions
[shibing624](https://github.com/shibing624) add this dataset. |