Dataset Preview
Go to dataset viewer
nwo (string) | sha (string) | path (string) | language (string) | identifier (string) | parameters (string) | argument_list (string) | return_statement (string) | docstring (string) | docstring_summary (string) | docstring_tokens (json) | function (string) | function_tokens (json) | url (string) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/nasnet.py
| python
| nasnetalarge
| (num_classes=1001, pretrained='imagenet')
| return model
| r"""NASNetALarge model architecture from the
`"NASNet" <https://arxiv.org/abs/1707.07012>`_ paper.
| r"""NASNetALarge model architecture from the
`"NASNet" <https://arxiv.org/abs/1707.07012>`_ paper.
| [
"r",
"NASNetALarge",
"model",
"architecture",
"from",
"the",
"NASNet",
"<https",
":",
"//",
"arxiv",
".",
"org",
"/",
"abs",
"/",
"1707",
".",
"07012",
">",
"_",
"paper",
"."
]
| def nasnetalarge(num_classes=1001, pretrained='imagenet'):
r"""NASNetALarge model architecture from the
`"NASNet" <https://arxiv.org/abs/1707.07012>`_ paper.
"""
if pretrained:
settings = pretrained_settings['nasnetalarge'][pretrained]
assert num_classes == settings['num_classes'], \
"num_classes should be {}, but is {}".format(settings['num_classes'], num_classes)
# both 'imagenet'&'imagenet+background' are loaded from same parameters
model = NASNetALarge(num_classes=1001)
model.load_state_dict(model_zoo.load_url(settings['url']))
if pretrained == 'imagenet':
new_last_linear = nn.Linear(model.last_linear.in_features, 1000)
new_last_linear.weight.data = model.last_linear.weight.data[1:]
new_last_linear.bias.data = model.last_linear.bias.data[1:]
model.last_linear = new_last_linear
model.input_space = settings['input_space']
model.input_size = settings['input_size']
model.input_range = settings['input_range']
model.mean = settings['mean']
model.std = settings['std']
else:
model = NASNetALarge(num_classes=num_classes)
return model
| [
"def",
"nasnetalarge",
"(",
"num_classes",
"=",
"1001",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"if",
"pretrained",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'nasnetalarge'",
"]",
"[",
"pretrained",
"]",
"assert",
"num_classes",
"==",
"settings",
"[",
"'num_classes'",
"]",
",",
"\"num_classes should be {}, but is {}\"",
".",
"format",
"(",
"settings",
"[",
"'num_classes'",
"]",
",",
"num_classes",
")",
"# both 'imagenet'&'imagenet+background' are loaded from same parameters",
"model",
"=",
"NASNetALarge",
"(",
"num_classes",
"=",
"1001",
")",
"model",
".",
"load_state_dict",
"(",
"model_zoo",
".",
"load_url",
"(",
"settings",
"[",
"'url'",
"]",
")",
")",
"if",
"pretrained",
"==",
"'imagenet'",
":",
"new_last_linear",
"=",
"nn",
".",
"Linear",
"(",
"model",
".",
"last_linear",
".",
"in_features",
",",
"1000",
")",
"new_last_linear",
".",
"weight",
".",
"data",
"=",
"model",
".",
"last_linear",
".",
"weight",
".",
"data",
"[",
"1",
":",
"]",
"new_last_linear",
".",
"bias",
".",
"data",
"=",
"model",
".",
"last_linear",
".",
"bias",
".",
"data",
"[",
"1",
":",
"]",
"model",
".",
"last_linear",
"=",
"new_last_linear",
"model",
".",
"input_space",
"=",
"settings",
"[",
"'input_space'",
"]",
"model",
".",
"input_size",
"=",
"settings",
"[",
"'input_size'",
"]",
"model",
".",
"input_range",
"=",
"settings",
"[",
"'input_range'",
"]",
"model",
".",
"mean",
"=",
"settings",
"[",
"'mean'",
"]",
"model",
".",
"std",
"=",
"settings",
"[",
"'std'",
"]",
"else",
":",
"model",
"=",
"NASNetALarge",
"(",
"num_classes",
"=",
"num_classes",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/nasnet.py#L608-L635
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/bninception.py
| python
| bninception
| (num_classes=1000, pretrained='imagenet')
| return model
| r"""BNInception model architecture from <https://arxiv.org/pdf/1502.03167.pdf>`_ paper.
| r"""BNInception model architecture from <https://arxiv.org/pdf/1502.03167.pdf>`_ paper.
| [
"r",
"BNInception",
"model",
"architecture",
"from",
"<https",
":",
"//",
"arxiv",
".",
"org",
"/",
"pdf",
"/",
"1502",
".",
"03167",
".",
"pdf",
">",
"_",
"paper",
"."
]
| def bninception(num_classes=1000, pretrained='imagenet'):
r"""BNInception model architecture from <https://arxiv.org/pdf/1502.03167.pdf>`_ paper.
"""
model = BNInception(num_classes=num_classes)
if pretrained is not None:
settings = pretrained_settings['bninception'][pretrained]
assert num_classes == settings['num_classes'], \
"num_classes should be {}, but is {}".format(settings['num_classes'], num_classes)
model.load_state_dict(model_zoo.load_url(settings['url']))
model.input_space = settings['input_space']
model.input_size = settings['input_size']
model.input_range = settings['input_range']
model.mean = settings['mean']
model.std = settings['std']
return model
| [
"def",
"bninception",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"BNInception",
"(",
"num_classes",
"=",
"num_classes",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'bninception'",
"]",
"[",
"pretrained",
"]",
"assert",
"num_classes",
"==",
"settings",
"[",
"'num_classes'",
"]",
",",
"\"num_classes should be {}, but is {}\"",
".",
"format",
"(",
"settings",
"[",
"'num_classes'",
"]",
",",
"num_classes",
")",
"model",
".",
"load_state_dict",
"(",
"model_zoo",
".",
"load_url",
"(",
"settings",
"[",
"'url'",
"]",
")",
")",
"model",
".",
"input_space",
"=",
"settings",
"[",
"'input_space'",
"]",
"model",
".",
"input_size",
"=",
"settings",
"[",
"'input_size'",
"]",
"model",
".",
"input_range",
"=",
"settings",
"[",
"'input_range'",
"]",
"model",
".",
"mean",
"=",
"settings",
"[",
"'mean'",
"]",
"model",
".",
"std",
"=",
"settings",
"[",
"'std'",
"]",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/bninception.py#L497-L511
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| alexnet
| (num_classes=1000, pretrained='imagenet')
| return model
| r"""AlexNet model architecture from the
`"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper.
| r"""AlexNet model architecture from the
`"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper.
| [
"r",
"AlexNet",
"model",
"architecture",
"from",
"the",
"One",
"weird",
"trick",
"...",
"<https",
":",
"//",
"arxiv",
".",
"org",
"/",
"abs",
"/",
"1404",
".",
"5997",
">",
"_",
"paper",
"."
]
| def alexnet(num_classes=1000, pretrained='imagenet'):
r"""AlexNet model architecture from the
`"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper.
"""
# https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py
model = models.alexnet(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['alexnet'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_alexnet(model)
return model
| [
"def",
"alexnet",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"# https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py",
"model",
"=",
"models",
".",
"alexnet",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'alexnet'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_alexnet",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L168-L178
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| densenet121
| (num_classes=1000, pretrained='imagenet')
| return model
| r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
| r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
| [
"r",
"Densenet",
"-",
"121",
"model",
"from",
"Densely",
"Connected",
"Convolutional",
"Networks",
"<https",
":",
"//",
"arxiv",
".",
"org",
"/",
"pdf",
"/",
"1608",
".",
"06993",
".",
"pdf",
">"
]
| def densenet121(num_classes=1000, pretrained='imagenet'):
r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
model = models.densenet121(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['densenet121'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_densenets(model)
return model
| [
"def",
"densenet121",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"densenet121",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'densenet121'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_densenets",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L205-L214
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| densenet169
| (num_classes=1000, pretrained='imagenet')
| return model
| r"""Densenet-169 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
| r"""Densenet-169 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
| [
"r",
"Densenet",
"-",
"169",
"model",
"from",
"Densely",
"Connected",
"Convolutional",
"Networks",
"<https",
":",
"//",
"arxiv",
".",
"org",
"/",
"pdf",
"/",
"1608",
".",
"06993",
".",
"pdf",
">"
]
| def densenet169(num_classes=1000, pretrained='imagenet'):
r"""Densenet-169 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
model = models.densenet169(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['densenet169'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_densenets(model)
return model
| [
"def",
"densenet169",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"densenet169",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'densenet169'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_densenets",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L216-L225
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| densenet201
| (num_classes=1000, pretrained='imagenet')
| return model
| r"""Densenet-201 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
| r"""Densenet-201 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
| [
"r",
"Densenet",
"-",
"201",
"model",
"from",
"Densely",
"Connected",
"Convolutional",
"Networks",
"<https",
":",
"//",
"arxiv",
".",
"org",
"/",
"pdf",
"/",
"1608",
".",
"06993",
".",
"pdf",
">"
]
| def densenet201(num_classes=1000, pretrained='imagenet'):
r"""Densenet-201 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
model = models.densenet201(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['densenet201'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_densenets(model)
return model
| [
"def",
"densenet201",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"densenet201",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'densenet201'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_densenets",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L227-L236
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| densenet161
| (num_classes=1000, pretrained='imagenet')
| return model
| r"""Densenet-161 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
| r"""Densenet-161 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
| [
"r",
"Densenet",
"-",
"161",
"model",
"from",
"Densely",
"Connected",
"Convolutional",
"Networks",
"<https",
":",
"//",
"arxiv",
".",
"org",
"/",
"pdf",
"/",
"1608",
".",
"06993",
".",
"pdf",
">"
]
| def densenet161(num_classes=1000, pretrained='imagenet'):
r"""Densenet-161 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
"""
model = models.densenet161(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['densenet161'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_densenets(model)
return model
| [
"def",
"densenet161",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"densenet161",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'densenet161'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_densenets",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L238-L247
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| inceptionv3
| (num_classes=1000, pretrained='imagenet')
| return model
| r"""Inception v3 model architecture from
`"Rethinking the Inception Architecture for Computer Vision" <http://arxiv.org/abs/1512.00567>`_.
| r"""Inception v3 model architecture from
`"Rethinking the Inception Architecture for Computer Vision" <http://arxiv.org/abs/1512.00567>`_.
| [
"r",
"Inception",
"v3",
"model",
"architecture",
"from",
"Rethinking",
"the",
"Inception",
"Architecture",
"for",
"Computer",
"Vision",
"<http",
":",
"//",
"arxiv",
".",
"org",
"/",
"abs",
"/",
"1512",
".",
"00567",
">",
"_",
"."
]
| def inceptionv3(num_classes=1000, pretrained='imagenet'):
r"""Inception v3 model architecture from
`"Rethinking the Inception Architecture for Computer Vision" <http://arxiv.org/abs/1512.00567>`_.
"""
model = models.inception_v3(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['inceptionv3'][pretrained]
model = load_pretrained(model, num_classes, settings)
# Modify attributs
model.last_linear = model.fc
del model.fc
def features(self, input):
# 299 x 299 x 3
x = self.Conv2d_1a_3x3(input) # 149 x 149 x 32
x = self.Conv2d_2a_3x3(x) # 147 x 147 x 32
x = self.Conv2d_2b_3x3(x) # 147 x 147 x 64
x = F.max_pool2d(x, kernel_size=3, stride=2) # 73 x 73 x 64
x = self.Conv2d_3b_1x1(x) # 73 x 73 x 80
x = self.Conv2d_4a_3x3(x) # 71 x 71 x 192
x = F.max_pool2d(x, kernel_size=3, stride=2) # 35 x 35 x 192
x = self.Mixed_5b(x) # 35 x 35 x 256
x = self.Mixed_5c(x) # 35 x 35 x 288
x = self.Mixed_5d(x) # 35 x 35 x 288
x = self.Mixed_6a(x) # 17 x 17 x 768
x = self.Mixed_6b(x) # 17 x 17 x 768
x = self.Mixed_6c(x) # 17 x 17 x 768
x = self.Mixed_6d(x) # 17 x 17 x 768
x = self.Mixed_6e(x) # 17 x 17 x 768
if self.training and self.aux_logits:
self._out_aux = self.AuxLogits(x) # 17 x 17 x 768
x = self.Mixed_7a(x) # 8 x 8 x 1280
x = self.Mixed_7b(x) # 8 x 8 x 2048
x = self.Mixed_7c(x) # 8 x 8 x 2048
return x
def logits(self, features):
x = F.avg_pool2d(features, kernel_size=8) # 1 x 1 x 2048
x = F.dropout(x, training=self.training) # 1 x 1 x 2048
x = x.view(x.size(0), -1) # 2048
x = self.last_linear(x) # 1000 (num_classes)
if self.training and self.aux_logits:
aux = self._out_aux
self._out_aux = None
return x, aux
return x
def forward(self, input):
x = self.features(input)
x = self.logits(x)
return x
# Modify methods
model.features = types.MethodType(features, model)
model.logits = types.MethodType(logits, model)
model.forward = types.MethodType(forward, model)
return model
| [
"def",
"inceptionv3",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"inception_v3",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'inceptionv3'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"# Modify attributs",
"model",
".",
"last_linear",
"=",
"model",
".",
"fc",
"del",
"model",
".",
"fc",
"def",
"features",
"(",
"self",
",",
"input",
")",
":",
"# 299 x 299 x 3",
"x",
"=",
"self",
".",
"Conv2d_1a_3x3",
"(",
"input",
")",
"# 149 x 149 x 32",
"x",
"=",
"self",
".",
"Conv2d_2a_3x3",
"(",
"x",
")",
"# 147 x 147 x 32",
"x",
"=",
"self",
".",
"Conv2d_2b_3x3",
"(",
"x",
")",
"# 147 x 147 x 64",
"x",
"=",
"F",
".",
"max_pool2d",
"(",
"x",
",",
"kernel_size",
"=",
"3",
",",
"stride",
"=",
"2",
")",
"# 73 x 73 x 64",
"x",
"=",
"self",
".",
"Conv2d_3b_1x1",
"(",
"x",
")",
"# 73 x 73 x 80",
"x",
"=",
"self",
".",
"Conv2d_4a_3x3",
"(",
"x",
")",
"# 71 x 71 x 192",
"x",
"=",
"F",
".",
"max_pool2d",
"(",
"x",
",",
"kernel_size",
"=",
"3",
",",
"stride",
"=",
"2",
")",
"# 35 x 35 x 192",
"x",
"=",
"self",
".",
"Mixed_5b",
"(",
"x",
")",
"# 35 x 35 x 256",
"x",
"=",
"self",
".",
"Mixed_5c",
"(",
"x",
")",
"# 35 x 35 x 288",
"x",
"=",
"self",
".",
"Mixed_5d",
"(",
"x",
")",
"# 35 x 35 x 288",
"x",
"=",
"self",
".",
"Mixed_6a",
"(",
"x",
")",
"# 17 x 17 x 768",
"x",
"=",
"self",
".",
"Mixed_6b",
"(",
"x",
")",
"# 17 x 17 x 768",
"x",
"=",
"self",
".",
"Mixed_6c",
"(",
"x",
")",
"# 17 x 17 x 768",
"x",
"=",
"self",
".",
"Mixed_6d",
"(",
"x",
")",
"# 17 x 17 x 768",
"x",
"=",
"self",
".",
"Mixed_6e",
"(",
"x",
")",
"# 17 x 17 x 768",
"if",
"self",
".",
"training",
"and",
"self",
".",
"aux_logits",
":",
"self",
".",
"_out_aux",
"=",
"self",
".",
"AuxLogits",
"(",
"x",
")",
"# 17 x 17 x 768",
"x",
"=",
"self",
".",
"Mixed_7a",
"(",
"x",
")",
"# 8 x 8 x 1280",
"x",
"=",
"self",
".",
"Mixed_7b",
"(",
"x",
")",
"# 8 x 8 x 2048",
"x",
"=",
"self",
".",
"Mixed_7c",
"(",
"x",
")",
"# 8 x 8 x 2048",
"return",
"x",
"def",
"logits",
"(",
"self",
",",
"features",
")",
":",
"x",
"=",
"F",
".",
"avg_pool2d",
"(",
"features",
",",
"kernel_size",
"=",
"8",
")",
"# 1 x 1 x 2048",
"x",
"=",
"F",
".",
"dropout",
"(",
"x",
",",
"training",
"=",
"self",
".",
"training",
")",
"# 1 x 1 x 2048",
"x",
"=",
"x",
".",
"view",
"(",
"x",
".",
"size",
"(",
"0",
")",
",",
"-",
"1",
")",
"# 2048",
"x",
"=",
"self",
".",
"last_linear",
"(",
"x",
")",
"# 1000 (num_classes)",
"if",
"self",
".",
"training",
"and",
"self",
".",
"aux_logits",
":",
"aux",
"=",
"self",
".",
"_out_aux",
"self",
".",
"_out_aux",
"=",
"None",
"return",
"x",
",",
"aux",
"return",
"x",
"def",
"forward",
"(",
"self",
",",
"input",
")",
":",
"x",
"=",
"self",
".",
"features",
"(",
"input",
")",
"x",
"=",
"self",
".",
"logits",
"(",
"x",
")",
"return",
"x",
"# Modify methods",
"model",
".",
"features",
"=",
"types",
".",
"MethodType",
"(",
"features",
",",
"model",
")",
"model",
".",
"logits",
"=",
"types",
".",
"MethodType",
"(",
"logits",
",",
"model",
")",
"model",
".",
"forward",
"=",
"types",
".",
"MethodType",
"(",
"forward",
",",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L252-L309
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| resnet18
| (num_classes=1000, pretrained='imagenet')
| return model
| Constructs a ResNet-18 model.
| Constructs a ResNet-18 model.
| [
"Constructs",
"a",
"ResNet",
"-",
"18",
"model",
"."
]
| def resnet18(num_classes=1000, pretrained='imagenet'):
"""Constructs a ResNet-18 model.
"""
model = models.resnet18(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['resnet18'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_resnets(model)
return model
| [
"def",
"resnet18",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"resnet18",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'resnet18'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_resnets",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L348-L356
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| resnet34
| (num_classes=1000, pretrained='imagenet')
| return model
| Constructs a ResNet-34 model.
| Constructs a ResNet-34 model.
| [
"Constructs",
"a",
"ResNet",
"-",
"34",
"model",
"."
]
| def resnet34(num_classes=1000, pretrained='imagenet'):
"""Constructs a ResNet-34 model.
"""
model = models.resnet34(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['resnet34'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_resnets(model)
return model
| [
"def",
"resnet34",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"resnet34",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'resnet34'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_resnets",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L358-L366
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| resnet50
| (num_classes=1000, pretrained='imagenet')
| return model
| Constructs a ResNet-50 model.
| Constructs a ResNet-50 model.
| [
"Constructs",
"a",
"ResNet",
"-",
"50",
"model",
"."
]
| def resnet50(num_classes=1000, pretrained='imagenet'):
"""Constructs a ResNet-50 model.
"""
model = models.resnet50(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['resnet50'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_resnets(model)
return model
| [
"def",
"resnet50",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"resnet50",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'resnet50'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_resnets",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L368-L376
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| resnet101
| (num_classes=1000, pretrained='imagenet')
| return model
| Constructs a ResNet-101 model.
| Constructs a ResNet-101 model.
| [
"Constructs",
"a",
"ResNet",
"-",
"101",
"model",
"."
]
| def resnet101(num_classes=1000, pretrained='imagenet'):
"""Constructs a ResNet-101 model.
"""
model = models.resnet101(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['resnet101'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_resnets(model)
return model
| [
"def",
"resnet101",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"resnet101",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'resnet101'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_resnets",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L378-L386
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| resnet152
| (num_classes=1000, pretrained='imagenet')
| return model
| Constructs a ResNet-152 model.
| Constructs a ResNet-152 model.
| [
"Constructs",
"a",
"ResNet",
"-",
"152",
"model",
"."
]
| def resnet152(num_classes=1000, pretrained='imagenet'):
"""Constructs a ResNet-152 model.
"""
model = models.resnet152(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['resnet152'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_resnets(model)
return model
| [
"def",
"resnet152",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"resnet152",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'resnet152'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_resnets",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L388-L396
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| squeezenet1_0
| (num_classes=1000, pretrained='imagenet')
| return model
| r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <0.5MB model size"
<https://arxiv.org/abs/1602.07360>`_ paper.
| r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <0.5MB model size"
<https://arxiv.org/abs/1602.07360>`_ paper.
| [
"r",
"SqueezeNet",
"model",
"architecture",
"from",
"the",
"SqueezeNet",
":",
"AlexNet",
"-",
"level",
"accuracy",
"with",
"50x",
"fewer",
"parameters",
"and",
"<0",
".",
"5MB",
"model",
"size",
"<https",
":",
"//",
"arxiv",
".",
"org",
"/",
"abs",
"/",
"1602",
".",
"07360",
">",
"_",
"paper",
"."
]
| def squeezenet1_0(num_classes=1000, pretrained='imagenet'):
r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <0.5MB model size"
<https://arxiv.org/abs/1602.07360>`_ paper.
"""
model = models.squeezenet1_0(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['squeezenet1_0'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_squeezenets(model)
return model
| [
"def",
"squeezenet1_0",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"squeezenet1_0",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'squeezenet1_0'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_squeezenets",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L428-L438
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| squeezenet1_1
| (num_classes=1000, pretrained='imagenet')
| return model
| r"""SqueezeNet 1.1 model from the `official SqueezeNet repo
<https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.
SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
than SqueezeNet 1.0, without sacrificing accuracy.
| r"""SqueezeNet 1.1 model from the `official SqueezeNet repo
<https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.
SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
than SqueezeNet 1.0, without sacrificing accuracy.
| [
"r",
"SqueezeNet",
"1",
".",
"1",
"model",
"from",
"the",
"official",
"SqueezeNet",
"repo",
"<https",
":",
"//",
"github",
".",
"com",
"/",
"DeepScale",
"/",
"SqueezeNet",
"/",
"tree",
"/",
"master",
"/",
"SqueezeNet_v1",
".",
"1",
">",
"_",
".",
"SqueezeNet",
"1",
".",
"1",
"has",
"2",
".",
"4x",
"less",
"computation",
"and",
"slightly",
"fewer",
"parameters",
"than",
"SqueezeNet",
"1",
".",
"0",
"without",
"sacrificing",
"accuracy",
"."
]
| def squeezenet1_1(num_classes=1000, pretrained='imagenet'):
r"""SqueezeNet 1.1 model from the `official SqueezeNet repo
<https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.
SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
than SqueezeNet 1.0, without sacrificing accuracy.
"""
model = models.squeezenet1_1(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['squeezenet1_1'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_squeezenets(model)
return model
| [
"def",
"squeezenet1_1",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"squeezenet1_1",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'squeezenet1_1'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_squeezenets",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L440-L451
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| vgg11
| (num_classes=1000, pretrained='imagenet')
| return model
| VGG 11-layer model (configuration "A")
| VGG 11-layer model (configuration "A")
| [
"VGG",
"11",
"-",
"layer",
"model",
"(",
"configuration",
"A",
")"
]
| def vgg11(num_classes=1000, pretrained='imagenet'):
"""VGG 11-layer model (configuration "A")
"""
model = models.vgg11(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['vgg11'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_vggs(model)
return model
| [
"def",
"vgg11",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"vgg11",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'vgg11'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_vggs",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L495-L503
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| vgg11_bn
| (num_classes=1000, pretrained='imagenet')
| return model
| VGG 11-layer model (configuration "A") with batch normalization
| VGG 11-layer model (configuration "A") with batch normalization
| [
"VGG",
"11",
"-",
"layer",
"model",
"(",
"configuration",
"A",
")",
"with",
"batch",
"normalization"
]
| def vgg11_bn(num_classes=1000, pretrained='imagenet'):
"""VGG 11-layer model (configuration "A") with batch normalization
"""
model = models.vgg11_bn(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['vgg11_bn'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_vggs(model)
return model
| [
"def",
"vgg11_bn",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"vgg11_bn",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'vgg11_bn'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_vggs",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L505-L513
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| vgg13
| (num_classes=1000, pretrained='imagenet')
| return model
| VGG 13-layer model (configuration "B")
| VGG 13-layer model (configuration "B")
| [
"VGG",
"13",
"-",
"layer",
"model",
"(",
"configuration",
"B",
")"
]
| def vgg13(num_classes=1000, pretrained='imagenet'):
"""VGG 13-layer model (configuration "B")
"""
model = models.vgg13(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['vgg13'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_vggs(model)
return model
| [
"def",
"vgg13",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"vgg13",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'vgg13'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_vggs",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L515-L523
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| vgg13_bn
| (num_classes=1000, pretrained='imagenet')
| return model
| VGG 13-layer model (configuration "B") with batch normalization
| VGG 13-layer model (configuration "B") with batch normalization
| [
"VGG",
"13",
"-",
"layer",
"model",
"(",
"configuration",
"B",
")",
"with",
"batch",
"normalization"
]
| def vgg13_bn(num_classes=1000, pretrained='imagenet'):
"""VGG 13-layer model (configuration "B") with batch normalization
"""
model = models.vgg13_bn(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['vgg13_bn'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_vggs(model)
return model
| [
"def",
"vgg13_bn",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"vgg13_bn",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'vgg13_bn'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_vggs",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L525-L533
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| vgg16
| (num_classes=1000, pretrained='imagenet')
| return model
| VGG 16-layer model (configuration "D")
| VGG 16-layer model (configuration "D")
| [
"VGG",
"16",
"-",
"layer",
"model",
"(",
"configuration",
"D",
")"
]
| def vgg16(num_classes=1000, pretrained='imagenet'):
"""VGG 16-layer model (configuration "D")
"""
model = models.vgg16(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['vgg16'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_vggs(model)
return model
| [
"def",
"vgg16",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"vgg16",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'vgg16'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_vggs",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L535-L543
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| vgg16_bn
| (num_classes=1000, pretrained='imagenet')
| return model
| VGG 16-layer model (configuration "D") with batch normalization
| VGG 16-layer model (configuration "D") with batch normalization
| [
"VGG",
"16",
"-",
"layer",
"model",
"(",
"configuration",
"D",
")",
"with",
"batch",
"normalization"
]
| def vgg16_bn(num_classes=1000, pretrained='imagenet'):
"""VGG 16-layer model (configuration "D") with batch normalization
"""
model = models.vgg16_bn(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['vgg16_bn'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_vggs(model)
return model
| [
"def",
"vgg16_bn",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"vgg16_bn",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'vgg16_bn'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_vggs",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L545-L553
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| vgg19
| (num_classes=1000, pretrained='imagenet')
| return model
| VGG 19-layer model (configuration "E")
| VGG 19-layer model (configuration "E")
| [
"VGG",
"19",
"-",
"layer",
"model",
"(",
"configuration",
"E",
")"
]
| def vgg19(num_classes=1000, pretrained='imagenet'):
"""VGG 19-layer model (configuration "E")
"""
model = models.vgg19(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['vgg19'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_vggs(model)
return model
| [
"def",
"vgg19",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"vgg19",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'vgg19'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_vggs",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L555-L563
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/torchvision_models.py
| python
| vgg19_bn
| (num_classes=1000, pretrained='imagenet')
| return model
| VGG 19-layer model (configuration 'E') with batch normalization
| VGG 19-layer model (configuration 'E') with batch normalization
| [
"VGG",
"19",
"-",
"layer",
"model",
"(",
"configuration",
"E",
")",
"with",
"batch",
"normalization"
]
| def vgg19_bn(num_classes=1000, pretrained='imagenet'):
"""VGG 19-layer model (configuration 'E') with batch normalization
"""
model = models.vgg19_bn(pretrained=False)
if pretrained is not None:
settings = pretrained_settings['vgg19_bn'][pretrained]
model = load_pretrained(model, num_classes, settings)
model = modify_vggs(model)
return model
| [
"def",
"vgg19_bn",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"models",
".",
"vgg19_bn",
"(",
"pretrained",
"=",
"False",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'vgg19_bn'",
"]",
"[",
"pretrained",
"]",
"model",
"=",
"load_pretrained",
"(",
"model",
",",
"num_classes",
",",
"settings",
")",
"model",
"=",
"modify_vggs",
"(",
"model",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/torchvision_models.py#L565-L573
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/senet.py
| python
| SENet.__init__
| (self, block, layers, groups, reduction, dropout_p=0.2,
inplanes=128, input_3x3=True, downsample_kernel_size=3,
downsample_padding=1, num_classes=1000)
| Parameters
----------
block (nn.Module): Bottleneck class.
- For SENet154: SEBottleneck
- For SE-ResNet models: SEResNetBottleneck
- For SE-ResNeXt models: SEResNeXtBottleneck
layers (list of ints): Number of residual blocks for 4 layers of the
network (layer1...layer4).
groups (int): Number of groups for the 3x3 convolution in each
bottleneck block.
- For SENet154: 64
- For SE-ResNet models: 1
- For SE-ResNeXt models: 32
reduction (int): Reduction ratio for Squeeze-and-Excitation modules.
- For all models: 16
dropout_p (float or None): Drop probability for the Dropout layer.
If `None` the Dropout layer is not used.
- For SENet154: 0.2
- For SE-ResNet models: None
- For SE-ResNeXt models: None
inplanes (int): Number of input channels for layer1.
- For SENet154: 128
- For SE-ResNet models: 64
- For SE-ResNeXt models: 64
input_3x3 (bool): If `True`, use three 3x3 convolutions instead of
a single 7x7 convolution in layer0.
- For SENet154: True
- For SE-ResNet models: False
- For SE-ResNeXt models: False
downsample_kernel_size (int): Kernel size for downsampling convolutions
in layer2, layer3 and layer4.
- For SENet154: 3
- For SE-ResNet models: 1
- For SE-ResNeXt models: 1
downsample_padding (int): Padding for downsampling convolutions in
layer2, layer3 and layer4.
- For SENet154: 1
- For SE-ResNet models: 0
- For SE-ResNeXt models: 0
num_classes (int): Number of outputs in `last_linear` layer.
- For all models: 1000
| Parameters
----------
block (nn.Module): Bottleneck class.
- For SENet154: SEBottleneck
- For SE-ResNet models: SEResNetBottleneck
- For SE-ResNeXt models: SEResNeXtBottleneck
layers (list of ints): Number of residual blocks for 4 layers of the
network (layer1...layer4).
groups (int): Number of groups for the 3x3 convolution in each
bottleneck block.
- For SENet154: 64
- For SE-ResNet models: 1
- For SE-ResNeXt models: 32
reduction (int): Reduction ratio for Squeeze-and-Excitation modules.
- For all models: 16
dropout_p (float or None): Drop probability for the Dropout layer.
If `None` the Dropout layer is not used.
- For SENet154: 0.2
- For SE-ResNet models: None
- For SE-ResNeXt models: None
inplanes (int): Number of input channels for layer1.
- For SENet154: 128
- For SE-ResNet models: 64
- For SE-ResNeXt models: 64
input_3x3 (bool): If `True`, use three 3x3 convolutions instead of
a single 7x7 convolution in layer0.
- For SENet154: True
- For SE-ResNet models: False
- For SE-ResNeXt models: False
downsample_kernel_size (int): Kernel size for downsampling convolutions
in layer2, layer3 and layer4.
- For SENet154: 3
- For SE-ResNet models: 1
- For SE-ResNeXt models: 1
downsample_padding (int): Padding for downsampling convolutions in
layer2, layer3 and layer4.
- For SENet154: 1
- For SE-ResNet models: 0
- For SE-ResNeXt models: 0
num_classes (int): Number of outputs in `last_linear` layer.
- For all models: 1000
| [
"Parameters",
"----------",
"block",
"(",
"nn",
".",
"Module",
")",
":",
"Bottleneck",
"class",
".",
"-",
"For",
"SENet154",
":",
"SEBottleneck",
"-",
"For",
"SE",
"-",
"ResNet",
"models",
":",
"SEResNetBottleneck",
"-",
"For",
"SE",
"-",
"ResNeXt",
"models",
":",
"SEResNeXtBottleneck",
"layers",
"(",
"list",
"of",
"ints",
")",
":",
"Number",
"of",
"residual",
"blocks",
"for",
"4",
"layers",
"of",
"the",
"network",
"(",
"layer1",
"...",
"layer4",
")",
".",
"groups",
"(",
"int",
")",
":",
"Number",
"of",
"groups",
"for",
"the",
"3x3",
"convolution",
"in",
"each",
"bottleneck",
"block",
".",
"-",
"For",
"SENet154",
":",
"64",
"-",
"For",
"SE",
"-",
"ResNet",
"models",
":",
"1",
"-",
"For",
"SE",
"-",
"ResNeXt",
"models",
":",
"32",
"reduction",
"(",
"int",
")",
":",
"Reduction",
"ratio",
"for",
"Squeeze",
"-",
"and",
"-",
"Excitation",
"modules",
".",
"-",
"For",
"all",
"models",
":",
"16",
"dropout_p",
"(",
"float",
"or",
"None",
")",
":",
"Drop",
"probability",
"for",
"the",
"Dropout",
"layer",
".",
"If",
"None",
"the",
"Dropout",
"layer",
"is",
"not",
"used",
".",
"-",
"For",
"SENet154",
":",
"0",
".",
"2",
"-",
"For",
"SE",
"-",
"ResNet",
"models",
":",
"None",
"-",
"For",
"SE",
"-",
"ResNeXt",
"models",
":",
"None",
"inplanes",
"(",
"int",
")",
":",
"Number",
"of",
"input",
"channels",
"for",
"layer1",
".",
"-",
"For",
"SENet154",
":",
"128",
"-",
"For",
"SE",
"-",
"ResNet",
"models",
":",
"64",
"-",
"For",
"SE",
"-",
"ResNeXt",
"models",
":",
"64",
"input_3x3",
"(",
"bool",
")",
":",
"If",
"True",
"use",
"three",
"3x3",
"convolutions",
"instead",
"of",
"a",
"single",
"7x7",
"convolution",
"in",
"layer0",
".",
"-",
"For",
"SENet154",
":",
"True",
"-",
"For",
"SE",
"-",
"ResNet",
"models",
":",
"False",
"-",
"For",
"SE",
"-",
"ResNeXt",
"models",
":",
"False",
"downsample_kernel_size",
"(",
"int",
")",
":",
"Kernel",
"size",
"for",
"downsampling",
"convolutions",
"in",
"layer2",
"layer3",
"and",
"layer4",
".",
"-",
"For",
"SENet154",
":",
"3",
"-",
"For",
"SE",
"-",
"ResNet",
"models",
":",
"1",
"-",
"For",
"SE",
"-",
"ResNeXt",
"models",
":",
"1",
"downsample_padding",
"(",
"int",
")",
":",
"Padding",
"for",
"downsampling",
"convolutions",
"in",
"layer2",
"layer3",
"and",
"layer4",
".",
"-",
"For",
"SENet154",
":",
"1",
"-",
"For",
"SE",
"-",
"ResNet",
"models",
":",
"0",
"-",
"For",
"SE",
"-",
"ResNeXt",
"models",
":",
"0",
"num_classes",
"(",
"int",
")",
":",
"Number",
"of",
"outputs",
"in",
"last_linear",
"layer",
".",
"-",
"For",
"all",
"models",
":",
"1000"
]
| def __init__(self, block, layers, groups, reduction, dropout_p=0.2,
inplanes=128, input_3x3=True, downsample_kernel_size=3,
downsample_padding=1, num_classes=1000):
"""
Parameters
----------
block (nn.Module): Bottleneck class.
- For SENet154: SEBottleneck
- For SE-ResNet models: SEResNetBottleneck
- For SE-ResNeXt models: SEResNeXtBottleneck
layers (list of ints): Number of residual blocks for 4 layers of the
network (layer1...layer4).
groups (int): Number of groups for the 3x3 convolution in each
bottleneck block.
- For SENet154: 64
- For SE-ResNet models: 1
- For SE-ResNeXt models: 32
reduction (int): Reduction ratio for Squeeze-and-Excitation modules.
- For all models: 16
dropout_p (float or None): Drop probability for the Dropout layer.
If `None` the Dropout layer is not used.
- For SENet154: 0.2
- For SE-ResNet models: None
- For SE-ResNeXt models: None
inplanes (int): Number of input channels for layer1.
- For SENet154: 128
- For SE-ResNet models: 64
- For SE-ResNeXt models: 64
input_3x3 (bool): If `True`, use three 3x3 convolutions instead of
a single 7x7 convolution in layer0.
- For SENet154: True
- For SE-ResNet models: False
- For SE-ResNeXt models: False
downsample_kernel_size (int): Kernel size for downsampling convolutions
in layer2, layer3 and layer4.
- For SENet154: 3
- For SE-ResNet models: 1
- For SE-ResNeXt models: 1
downsample_padding (int): Padding for downsampling convolutions in
layer2, layer3 and layer4.
- For SENet154: 1
- For SE-ResNet models: 0
- For SE-ResNeXt models: 0
num_classes (int): Number of outputs in `last_linear` layer.
- For all models: 1000
"""
super(SENet, self).__init__()
self.inplanes = inplanes
if input_3x3:
layer0_modules = [
('conv1', nn.Conv2d(3, 64, 3, stride=2, padding=1,
bias=False)),
('bn1', nn.BatchNorm2d(64)),
('relu1', nn.ReLU(inplace=True)),
('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1,
bias=False)),
('bn2', nn.BatchNorm2d(64)),
('relu2', nn.ReLU(inplace=True)),
('conv3', nn.Conv2d(64, inplanes, 3, stride=1, padding=1,
bias=False)),
('bn3', nn.BatchNorm2d(inplanes)),
('relu3', nn.ReLU(inplace=True)),
]
else:
layer0_modules = [
('conv1', nn.Conv2d(3, inplanes, kernel_size=7, stride=2,
padding=3, bias=False)),
('bn1', nn.BatchNorm2d(inplanes)),
('relu1', nn.ReLU(inplace=True)),
]
# To preserve compatibility with Caffe weights `ceil_mode=True`
# is used instead of `padding=1`.
layer0_modules.append(('pool', nn.MaxPool2d(3, stride=2,
ceil_mode=True)))
self.layer0 = nn.Sequential(OrderedDict(layer0_modules))
self.layer1 = self._make_layer(
block,
planes=64,
blocks=layers[0],
groups=groups,
reduction=reduction,
downsample_kernel_size=1,
downsample_padding=0
)
self.layer2 = self._make_layer(
block,
planes=128,
blocks=layers[1],
stride=2,
groups=groups,
reduction=reduction,
downsample_kernel_size=downsample_kernel_size,
downsample_padding=downsample_padding
)
self.layer3 = self._make_layer(
block,
planes=256,
blocks=layers[2],
stride=2,
groups=groups,
reduction=reduction,
downsample_kernel_size=downsample_kernel_size,
downsample_padding=downsample_padding
)
self.layer4 = self._make_layer(
block,
planes=512,
blocks=layers[3],
stride=2,
groups=groups,
reduction=reduction,
downsample_kernel_size=downsample_kernel_size,
downsample_padding=downsample_padding
)
self.avg_pool = nn.AvgPool2d(7, stride=1)
self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None
self.last_linear = nn.Linear(512 * block.expansion, num_classes)
| [
"def",
"__init__",
"(",
"self",
",",
"block",
",",
"layers",
",",
"groups",
",",
"reduction",
",",
"dropout_p",
"=",
"0.2",
",",
"inplanes",
"=",
"128",
",",
"input_3x3",
"=",
"True",
",",
"downsample_kernel_size",
"=",
"3",
",",
"downsample_padding",
"=",
"1",
",",
"num_classes",
"=",
"1000",
")",
":",
"super",
"(",
"SENet",
",",
"self",
")",
".",
"__init__",
"(",
")",
"self",
".",
"inplanes",
"=",
"inplanes",
"if",
"input_3x3",
":",
"layer0_modules",
"=",
"[",
"(",
"'conv1'",
",",
"nn",
".",
"Conv2d",
"(",
"3",
",",
"64",
",",
"3",
",",
"stride",
"=",
"2",
",",
"padding",
"=",
"1",
",",
"bias",
"=",
"False",
")",
")",
",",
"(",
"'bn1'",
",",
"nn",
".",
"BatchNorm2d",
"(",
"64",
")",
")",
",",
"(",
"'relu1'",
",",
"nn",
".",
"ReLU",
"(",
"inplace",
"=",
"True",
")",
")",
",",
"(",
"'conv2'",
",",
"nn",
".",
"Conv2d",
"(",
"64",
",",
"64",
",",
"3",
",",
"stride",
"=",
"1",
",",
"padding",
"=",
"1",
",",
"bias",
"=",
"False",
")",
")",
",",
"(",
"'bn2'",
",",
"nn",
".",
"BatchNorm2d",
"(",
"64",
")",
")",
",",
"(",
"'relu2'",
",",
"nn",
".",
"ReLU",
"(",
"inplace",
"=",
"True",
")",
")",
",",
"(",
"'conv3'",
",",
"nn",
".",
"Conv2d",
"(",
"64",
",",
"inplanes",
",",
"3",
",",
"stride",
"=",
"1",
",",
"padding",
"=",
"1",
",",
"bias",
"=",
"False",
")",
")",
",",
"(",
"'bn3'",
",",
"nn",
".",
"BatchNorm2d",
"(",
"inplanes",
")",
")",
",",
"(",
"'relu3'",
",",
"nn",
".",
"ReLU",
"(",
"inplace",
"=",
"True",
")",
")",
",",
"]",
"else",
":",
"layer0_modules",
"=",
"[",
"(",
"'conv1'",
",",
"nn",
".",
"Conv2d",
"(",
"3",
",",
"inplanes",
",",
"kernel_size",
"=",
"7",
",",
"stride",
"=",
"2",
",",
"padding",
"=",
"3",
",",
"bias",
"=",
"False",
")",
")",
",",
"(",
"'bn1'",
",",
"nn",
".",
"BatchNorm2d",
"(",
"inplanes",
")",
")",
",",
"(",
"'relu1'",
",",
"nn",
".",
"ReLU",
"(",
"inplace",
"=",
"True",
")",
")",
",",
"]",
"# To preserve compatibility with Caffe weights `ceil_mode=True`",
"# is used instead of `padding=1`.",
"layer0_modules",
".",
"append",
"(",
"(",
"'pool'",
",",
"nn",
".",
"MaxPool2d",
"(",
"3",
",",
"stride",
"=",
"2",
",",
"ceil_mode",
"=",
"True",
")",
")",
")",
"self",
".",
"layer0",
"=",
"nn",
".",
"Sequential",
"(",
"OrderedDict",
"(",
"layer0_modules",
")",
")",
"self",
".",
"layer1",
"=",
"self",
".",
"_make_layer",
"(",
"block",
",",
"planes",
"=",
"64",
",",
"blocks",
"=",
"layers",
"[",
"0",
"]",
",",
"groups",
"=",
"groups",
",",
"reduction",
"=",
"reduction",
",",
"downsample_kernel_size",
"=",
"1",
",",
"downsample_padding",
"=",
"0",
")",
"self",
".",
"layer2",
"=",
"self",
".",
"_make_layer",
"(",
"block",
",",
"planes",
"=",
"128",
",",
"blocks",
"=",
"layers",
"[",
"1",
"]",
",",
"stride",
"=",
"2",
",",
"groups",
"=",
"groups",
",",
"reduction",
"=",
"reduction",
",",
"downsample_kernel_size",
"=",
"downsample_kernel_size",
",",
"downsample_padding",
"=",
"downsample_padding",
")",
"self",
".",
"layer3",
"=",
"self",
".",
"_make_layer",
"(",
"block",
",",
"planes",
"=",
"256",
",",
"blocks",
"=",
"layers",
"[",
"2",
"]",
",",
"stride",
"=",
"2",
",",
"groups",
"=",
"groups",
",",
"reduction",
"=",
"reduction",
",",
"downsample_kernel_size",
"=",
"downsample_kernel_size",
",",
"downsample_padding",
"=",
"downsample_padding",
")",
"self",
".",
"layer4",
"=",
"self",
".",
"_make_layer",
"(",
"block",
",",
"planes",
"=",
"512",
",",
"blocks",
"=",
"layers",
"[",
"3",
"]",
",",
"stride",
"=",
"2",
",",
"groups",
"=",
"groups",
",",
"reduction",
"=",
"reduction",
",",
"downsample_kernel_size",
"=",
"downsample_kernel_size",
",",
"downsample_padding",
"=",
"downsample_padding",
")",
"self",
".",
"avg_pool",
"=",
"nn",
".",
"AvgPool2d",
"(",
"7",
",",
"stride",
"=",
"1",
")",
"self",
".",
"dropout",
"=",
"nn",
".",
"Dropout",
"(",
"dropout_p",
")",
"if",
"dropout_p",
"is",
"not",
"None",
"else",
"None",
"self",
".",
"last_linear",
"=",
"nn",
".",
"Linear",
"(",
"512",
"*",
"block",
".",
"expansion",
",",
"num_classes",
")"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/senet.py#L209-L325
|
||
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/cafferesnet.py
| python
| conv3x3
| (in_planes, out_planes, stride=1)
| return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
| 3x3 convolution with padding
| 3x3 convolution with padding
| [
"3x3",
"convolution",
"with",
"padding"
]
| def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
| [
"def",
"conv3x3",
"(",
"in_planes",
",",
"out_planes",
",",
"stride",
"=",
"1",
")",
":",
"return",
"nn",
".",
"Conv2d",
"(",
"in_planes",
",",
"out_planes",
",",
"kernel_size",
"=",
"3",
",",
"stride",
"=",
"stride",
",",
"padding",
"=",
"1",
",",
"bias",
"=",
"False",
")"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/cafferesnet.py#L23-L26
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/cafferesnet.py
| python
| cafferesnet101
| (num_classes=1000, pretrained='imagenet')
| return model
| Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
| Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
| [
"Constructs",
"a",
"ResNet",
"-",
"101",
"model",
".",
"Args",
":",
"pretrained",
"(",
"bool",
")",
":",
"If",
"True",
"returns",
"a",
"model",
"pre",
"-",
"trained",
"on",
"ImageNet"
]
| def cafferesnet101(num_classes=1000, pretrained='imagenet'):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes)
if pretrained is not None:
settings = pretrained_settings['cafferesnet101'][pretrained]
assert num_classes == settings['num_classes'], \
"num_classes should be {}, but is {}".format(settings['num_classes'], num_classes)
model.load_state_dict(model_zoo.load_url(settings['url']))
model.input_space = settings['input_space']
model.input_size = settings['input_size']
model.input_range = settings['input_range']
model.mean = settings['mean']
model.std = settings['std']
return model
| [
"def",
"cafferesnet101",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"ResNet",
"(",
"Bottleneck",
",",
"[",
"3",
",",
"4",
",",
"23",
",",
"3",
"]",
",",
"num_classes",
"=",
"num_classes",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'cafferesnet101'",
"]",
"[",
"pretrained",
"]",
"assert",
"num_classes",
"==",
"settings",
"[",
"'num_classes'",
"]",
",",
"\"num_classes should be {}, but is {}\"",
".",
"format",
"(",
"settings",
"[",
"'num_classes'",
"]",
",",
"num_classes",
")",
"model",
".",
"load_state_dict",
"(",
"model_zoo",
".",
"load_url",
"(",
"settings",
"[",
"'url'",
"]",
")",
")",
"model",
".",
"input_space",
"=",
"settings",
"[",
"'input_space'",
"]",
"model",
".",
"input_size",
"=",
"settings",
"[",
"'input_size'",
"]",
"model",
".",
"input_range",
"=",
"settings",
"[",
"'input_range'",
"]",
"model",
".",
"mean",
"=",
"settings",
"[",
"'mean'",
"]",
"model",
".",
"std",
"=",
"settings",
"[",
"'std'",
"]",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/cafferesnet.py#L168-L184
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/nasnet_mobile.py
| python
| nasnetamobile
| (num_classes=1000, pretrained='imagenet')
| return model
| r"""NASNetALarge model architecture from the
`"NASNet" <https://arxiv.org/abs/1707.07012>`_ paper.
| r"""NASNetALarge model architecture from the
`"NASNet" <https://arxiv.org/abs/1707.07012>`_ paper.
| [
"r",
"NASNetALarge",
"model",
"architecture",
"from",
"the",
"NASNet",
"<https",
":",
"//",
"arxiv",
".",
"org",
"/",
"abs",
"/",
"1707",
".",
"07012",
">",
"_",
"paper",
"."
]
| def nasnetamobile(num_classes=1000, pretrained='imagenet'):
r"""NASNetALarge model architecture from the
`"NASNet" <https://arxiv.org/abs/1707.07012>`_ paper.
"""
if pretrained:
settings = pretrained_settings['nasnetamobile'][pretrained]
assert num_classes == settings['num_classes'], \
"num_classes should be {}, but is {}".format(settings['num_classes'], num_classes)
# both 'imagenet'&'imagenet+background' are loaded from same parameters
model = NASNetAMobile(num_classes=num_classes)
model.load_state_dict(model_zoo.load_url(settings['url'], map_location=None))
# if pretrained == 'imagenet':
# new_last_linear = nn.Linear(model.last_linear.in_features, 1000)
# new_last_linear.weight.data = model.last_linear.weight.data[1:]
# new_last_linear.bias.data = model.last_linear.bias.data[1:]
# model.last_linear = new_last_linear
model.input_space = settings['input_space']
model.input_size = settings['input_size']
model.input_range = settings['input_range']
model.mean = settings['mean']
model.std = settings['std']
else:
settings = pretrained_settings['nasnetamobile']['imagenet']
model = NASNetAMobile(num_classes=num_classes)
model.input_space = settings['input_space']
model.input_size = settings['input_size']
model.input_range = settings['input_range']
model.mean = settings['mean']
model.std = settings['std']
return model
| [
"def",
"nasnetamobile",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"if",
"pretrained",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'nasnetamobile'",
"]",
"[",
"pretrained",
"]",
"assert",
"num_classes",
"==",
"settings",
"[",
"'num_classes'",
"]",
",",
"\"num_classes should be {}, but is {}\"",
".",
"format",
"(",
"settings",
"[",
"'num_classes'",
"]",
",",
"num_classes",
")",
"# both 'imagenet'&'imagenet+background' are loaded from same parameters",
"model",
"=",
"NASNetAMobile",
"(",
"num_classes",
"=",
"num_classes",
")",
"model",
".",
"load_state_dict",
"(",
"model_zoo",
".",
"load_url",
"(",
"settings",
"[",
"'url'",
"]",
",",
"map_location",
"=",
"None",
")",
")",
"# if pretrained == 'imagenet':",
"# new_last_linear = nn.Linear(model.last_linear.in_features, 1000)",
"# new_last_linear.weight.data = model.last_linear.weight.data[1:]",
"# new_last_linear.bias.data = model.last_linear.bias.data[1:]",
"# model.last_linear = new_last_linear",
"model",
".",
"input_space",
"=",
"settings",
"[",
"'input_space'",
"]",
"model",
".",
"input_size",
"=",
"settings",
"[",
"'input_size'",
"]",
"model",
".",
"input_range",
"=",
"settings",
"[",
"'input_range'",
"]",
"model",
".",
"mean",
"=",
"settings",
"[",
"'mean'",
"]",
"model",
".",
"std",
"=",
"settings",
"[",
"'std'",
"]",
"else",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'nasnetamobile'",
"]",
"[",
"'imagenet'",
"]",
"model",
"=",
"NASNetAMobile",
"(",
"num_classes",
"=",
"num_classes",
")",
"model",
".",
"input_space",
"=",
"settings",
"[",
"'input_space'",
"]",
"model",
".",
"input_size",
"=",
"settings",
"[",
"'input_size'",
"]",
"model",
".",
"input_range",
"=",
"settings",
"[",
"'input_range'",
"]",
"model",
".",
"mean",
"=",
"settings",
"[",
"'mean'",
"]",
"model",
".",
"std",
"=",
"settings",
"[",
"'std'",
"]",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/nasnet_mobile.py#L618-L652
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/fbresnet.py
| python
| conv3x3
| (in_planes, out_planes, stride=1)
| return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=True)
| 3x3 convolution with padding
| 3x3 convolution with padding
| [
"3x3",
"convolution",
"with",
"padding"
]
| def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=True)
| [
"def",
"conv3x3",
"(",
"in_planes",
",",
"out_planes",
",",
"stride",
"=",
"1",
")",
":",
"return",
"nn",
".",
"Conv2d",
"(",
"in_planes",
",",
"out_planes",
",",
"kernel_size",
"=",
"3",
",",
"stride",
"=",
"stride",
",",
"padding",
"=",
"1",
",",
"bias",
"=",
"True",
")"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/fbresnet.py#L27-L30
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/fbresnet.py
| python
| fbresnet18
| (num_classes=1000)
| return model
| Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
| Constructs a ResNet-18 model.
| [
"Constructs",
"a",
"ResNet",
"-",
"18",
"model",
"."
]
| def fbresnet18(num_classes=1000):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = FBResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes)
return model
| [
"def",
"fbresnet18",
"(",
"num_classes",
"=",
"1000",
")",
":",
"model",
"=",
"FBResNet",
"(",
"BasicBlock",
",",
"[",
"2",
",",
"2",
",",
"2",
",",
"2",
"]",
",",
"num_classes",
"=",
"num_classes",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/fbresnet.py#L176-L183
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/fbresnet.py
| python
| fbresnet34
| (num_classes=1000)
| return model
| Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
| Constructs a ResNet-34 model.
| [
"Constructs",
"a",
"ResNet",
"-",
"34",
"model",
"."
]
| def fbresnet34(num_classes=1000):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = FBResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes)
return model
| [
"def",
"fbresnet34",
"(",
"num_classes",
"=",
"1000",
")",
":",
"model",
"=",
"FBResNet",
"(",
"BasicBlock",
",",
"[",
"3",
",",
"4",
",",
"6",
",",
"3",
"]",
",",
"num_classes",
"=",
"num_classes",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/fbresnet.py#L186-L193
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/fbresnet.py
| python
| fbresnet50
| (num_classes=1000)
| return model
| Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
| Constructs a ResNet-50 model.
| [
"Constructs",
"a",
"ResNet",
"-",
"50",
"model",
"."
]
| def fbresnet50(num_classes=1000):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = FBResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes)
return model
| [
"def",
"fbresnet50",
"(",
"num_classes",
"=",
"1000",
")",
":",
"model",
"=",
"FBResNet",
"(",
"Bottleneck",
",",
"[",
"3",
",",
"4",
",",
"6",
",",
"3",
"]",
",",
"num_classes",
"=",
"num_classes",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/fbresnet.py#L196-L203
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/fbresnet.py
| python
| fbresnet101
| (num_classes=1000)
| return model
| Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
| Constructs a ResNet-101 model.
| [
"Constructs",
"a",
"ResNet",
"-",
"101",
"model",
"."
]
| def fbresnet101(num_classes=1000):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = FBResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes)
return model
| [
"def",
"fbresnet101",
"(",
"num_classes",
"=",
"1000",
")",
":",
"model",
"=",
"FBResNet",
"(",
"Bottleneck",
",",
"[",
"3",
",",
"4",
",",
"23",
",",
"3",
"]",
",",
"num_classes",
"=",
"num_classes",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/fbresnet.py#L206-L213
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/fbresnet.py
| python
| fbresnet152
| (num_classes=1000, pretrained='imagenet')
| return model
| Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
| Constructs a ResNet-152 model.
| [
"Constructs",
"a",
"ResNet",
"-",
"152",
"model",
"."
]
| def fbresnet152(num_classes=1000, pretrained='imagenet'):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = FBResNet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes)
if pretrained is not None:
settings = pretrained_settings['fbresnet152'][pretrained]
assert num_classes == settings['num_classes'], \
"num_classes should be {}, but is {}".format(settings['num_classes'], num_classes)
model.load_state_dict(model_zoo.load_url(settings['url']))
model.input_space = settings['input_space']
model.input_size = settings['input_size']
model.input_range = settings['input_range']
model.mean = settings['mean']
model.std = settings['std']
return model
| [
"def",
"fbresnet152",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"model",
"=",
"FBResNet",
"(",
"Bottleneck",
",",
"[",
"3",
",",
"8",
",",
"36",
",",
"3",
"]",
",",
"num_classes",
"=",
"num_classes",
")",
"if",
"pretrained",
"is",
"not",
"None",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'fbresnet152'",
"]",
"[",
"pretrained",
"]",
"assert",
"num_classes",
"==",
"settings",
"[",
"'num_classes'",
"]",
",",
"\"num_classes should be {}, but is {}\"",
".",
"format",
"(",
"settings",
"[",
"'num_classes'",
"]",
",",
"num_classes",
")",
"model",
".",
"load_state_dict",
"(",
"model_zoo",
".",
"load_url",
"(",
"settings",
"[",
"'url'",
"]",
")",
")",
"model",
".",
"input_space",
"=",
"settings",
"[",
"'input_space'",
"]",
"model",
".",
"input_size",
"=",
"settings",
"[",
"'input_size'",
"]",
"model",
".",
"input_range",
"=",
"settings",
"[",
"'input_range'",
"]",
"model",
".",
"mean",
"=",
"settings",
"[",
"'mean'",
"]",
"model",
".",
"std",
"=",
"settings",
"[",
"'std'",
"]",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/fbresnet.py#L216-L233
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/inceptionresnetv2.py
| python
| inceptionresnetv2
| (num_classes=1000, pretrained='imagenet')
| return model
| r"""InceptionResNetV2 model architecture from the
`"InceptionV4, Inception-ResNet..." <https://arxiv.org/abs/1602.07261>`_ paper.
| r"""InceptionResNetV2 model architecture from the
`"InceptionV4, Inception-ResNet..." <https://arxiv.org/abs/1602.07261>`_ paper.
| [
"r",
"InceptionResNetV2",
"model",
"architecture",
"from",
"the",
"InceptionV4",
"Inception",
"-",
"ResNet",
"...",
"<https",
":",
"//",
"arxiv",
".",
"org",
"/",
"abs",
"/",
"1602",
".",
"07261",
">",
"_",
"paper",
"."
]
| def inceptionresnetv2(num_classes=1000, pretrained='imagenet'):
r"""InceptionResNetV2 model architecture from the
`"InceptionV4, Inception-ResNet..." <https://arxiv.org/abs/1602.07261>`_ paper.
"""
if pretrained:
settings = pretrained_settings['inceptionresnetv2'][pretrained]
assert num_classes == settings['num_classes'], \
"num_classes should be {}, but is {}".format(settings['num_classes'], num_classes)
# both 'imagenet'&'imagenet+background' are loaded from same parameters
model = InceptionResNetV2(num_classes=1001)
model.load_state_dict(model_zoo.load_url(settings['url']))
if pretrained == 'imagenet':
new_last_linear = nn.Linear(1536, 1000)
new_last_linear.weight.data = model.last_linear.weight.data[1:]
new_last_linear.bias.data = model.last_linear.bias.data[1:]
model.last_linear = new_last_linear
model.input_space = settings['input_space']
model.input_size = settings['input_size']
model.input_range = settings['input_range']
model.mean = settings['mean']
model.std = settings['std']
else:
model = InceptionResNetV2(num_classes=num_classes)
return model
| [
"def",
"inceptionresnetv2",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"if",
"pretrained",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'inceptionresnetv2'",
"]",
"[",
"pretrained",
"]",
"assert",
"num_classes",
"==",
"settings",
"[",
"'num_classes'",
"]",
",",
"\"num_classes should be {}, but is {}\"",
".",
"format",
"(",
"settings",
"[",
"'num_classes'",
"]",
",",
"num_classes",
")",
"# both 'imagenet'&'imagenet+background' are loaded from same parameters",
"model",
"=",
"InceptionResNetV2",
"(",
"num_classes",
"=",
"1001",
")",
"model",
".",
"load_state_dict",
"(",
"model_zoo",
".",
"load_url",
"(",
"settings",
"[",
"'url'",
"]",
")",
")",
"if",
"pretrained",
"==",
"'imagenet'",
":",
"new_last_linear",
"=",
"nn",
".",
"Linear",
"(",
"1536",
",",
"1000",
")",
"new_last_linear",
".",
"weight",
".",
"data",
"=",
"model",
".",
"last_linear",
".",
"weight",
".",
"data",
"[",
"1",
":",
"]",
"new_last_linear",
".",
"bias",
".",
"data",
"=",
"model",
".",
"last_linear",
".",
"bias",
".",
"data",
"[",
"1",
":",
"]",
"model",
".",
"last_linear",
"=",
"new_last_linear",
"model",
".",
"input_space",
"=",
"settings",
"[",
"'input_space'",
"]",
"model",
".",
"input_size",
"=",
"settings",
"[",
"'input_size'",
"]",
"model",
".",
"input_range",
"=",
"settings",
"[",
"'input_range'",
"]",
"model",
".",
"mean",
"=",
"settings",
"[",
"'mean'",
"]",
"model",
".",
"std",
"=",
"settings",
"[",
"'std'",
"]",
"else",
":",
"model",
"=",
"InceptionResNetV2",
"(",
"num_classes",
"=",
"num_classes",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/inceptionresnetv2.py#L333-L360
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/xception.py
| python
| Xception.__init__
| (self, num_classes=1000)
| Constructor
Args:
num_classes: number of classes
| Constructor
Args:
num_classes: number of classes
| [
"Constructor",
"Args",
":",
"num_classes",
":",
"number",
"of",
"classes"
]
| def __init__(self, num_classes=1000):
""" Constructor
Args:
num_classes: number of classes
"""
super(Xception, self).__init__()
self.num_classes = num_classes
self.conv1 = nn.Conv2d(3, 32, 3,2, 0, bias=False)
self.bn1 = nn.BatchNorm2d(32)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(32,64,3,bias=False)
self.bn2 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU(inplace=True)
#do relu here
self.block1=Block(64,128,2,2,start_with_relu=False,grow_first=True)
self.block2=Block(128,256,2,2,start_with_relu=True,grow_first=True)
self.block3=Block(256,728,2,2,start_with_relu=True,grow_first=True)
self.block4=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block5=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block6=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block7=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block8=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block9=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block10=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block11=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block12=Block(728,1024,2,2,start_with_relu=True,grow_first=False)
self.conv3 = SeparableConv2d(1024,1536,3,1,1)
self.bn3 = nn.BatchNorm2d(1536)
self.relu3 = nn.ReLU(inplace=True)
#do relu here
self.conv4 = SeparableConv2d(1536,2048,3,1,1)
self.bn4 = nn.BatchNorm2d(2048)
self.fc = nn.Linear(2048, num_classes)
| [
"def",
"__init__",
"(",
"self",
",",
"num_classes",
"=",
"1000",
")",
":",
"super",
"(",
"Xception",
",",
"self",
")",
".",
"__init__",
"(",
")",
"self",
".",
"num_classes",
"=",
"num_classes",
"self",
".",
"conv1",
"=",
"nn",
".",
"Conv2d",
"(",
"3",
",",
"32",
",",
"3",
",",
"2",
",",
"0",
",",
"bias",
"=",
"False",
")",
"self",
".",
"bn1",
"=",
"nn",
".",
"BatchNorm2d",
"(",
"32",
")",
"self",
".",
"relu1",
"=",
"nn",
".",
"ReLU",
"(",
"inplace",
"=",
"True",
")",
"self",
".",
"conv2",
"=",
"nn",
".",
"Conv2d",
"(",
"32",
",",
"64",
",",
"3",
",",
"bias",
"=",
"False",
")",
"self",
".",
"bn2",
"=",
"nn",
".",
"BatchNorm2d",
"(",
"64",
")",
"self",
".",
"relu2",
"=",
"nn",
".",
"ReLU",
"(",
"inplace",
"=",
"True",
")",
"#do relu here",
"self",
".",
"block1",
"=",
"Block",
"(",
"64",
",",
"128",
",",
"2",
",",
"2",
",",
"start_with_relu",
"=",
"False",
",",
"grow_first",
"=",
"True",
")",
"self",
".",
"block2",
"=",
"Block",
"(",
"128",
",",
"256",
",",
"2",
",",
"2",
",",
"start_with_relu",
"=",
"True",
",",
"grow_first",
"=",
"True",
")",
"self",
".",
"block3",
"=",
"Block",
"(",
"256",
",",
"728",
",",
"2",
",",
"2",
",",
"start_with_relu",
"=",
"True",
",",
"grow_first",
"=",
"True",
")",
"self",
".",
"block4",
"=",
"Block",
"(",
"728",
",",
"728",
",",
"3",
",",
"1",
",",
"start_with_relu",
"=",
"True",
",",
"grow_first",
"=",
"True",
")",
"self",
".",
"block5",
"=",
"Block",
"(",
"728",
",",
"728",
",",
"3",
",",
"1",
",",
"start_with_relu",
"=",
"True",
",",
"grow_first",
"=",
"True",
")",
"self",
".",
"block6",
"=",
"Block",
"(",
"728",
",",
"728",
",",
"3",
",",
"1",
",",
"start_with_relu",
"=",
"True",
",",
"grow_first",
"=",
"True",
")",
"self",
".",
"block7",
"=",
"Block",
"(",
"728",
",",
"728",
",",
"3",
",",
"1",
",",
"start_with_relu",
"=",
"True",
",",
"grow_first",
"=",
"True",
")",
"self",
".",
"block8",
"=",
"Block",
"(",
"728",
",",
"728",
",",
"3",
",",
"1",
",",
"start_with_relu",
"=",
"True",
",",
"grow_first",
"=",
"True",
")",
"self",
".",
"block9",
"=",
"Block",
"(",
"728",
",",
"728",
",",
"3",
",",
"1",
",",
"start_with_relu",
"=",
"True",
",",
"grow_first",
"=",
"True",
")",
"self",
".",
"block10",
"=",
"Block",
"(",
"728",
",",
"728",
",",
"3",
",",
"1",
",",
"start_with_relu",
"=",
"True",
",",
"grow_first",
"=",
"True",
")",
"self",
".",
"block11",
"=",
"Block",
"(",
"728",
",",
"728",
",",
"3",
",",
"1",
",",
"start_with_relu",
"=",
"True",
",",
"grow_first",
"=",
"True",
")",
"self",
".",
"block12",
"=",
"Block",
"(",
"728",
",",
"1024",
",",
"2",
",",
"2",
",",
"start_with_relu",
"=",
"True",
",",
"grow_first",
"=",
"False",
")",
"self",
".",
"conv3",
"=",
"SeparableConv2d",
"(",
"1024",
",",
"1536",
",",
"3",
",",
"1",
",",
"1",
")",
"self",
".",
"bn3",
"=",
"nn",
".",
"BatchNorm2d",
"(",
"1536",
")",
"self",
".",
"relu3",
"=",
"nn",
".",
"ReLU",
"(",
"inplace",
"=",
"True",
")",
"#do relu here",
"self",
".",
"conv4",
"=",
"SeparableConv2d",
"(",
"1536",
",",
"2048",
",",
"3",
",",
"1",
",",
"1",
")",
"self",
".",
"bn4",
"=",
"nn",
".",
"BatchNorm2d",
"(",
"2048",
")",
"self",
".",
"fc",
"=",
"nn",
".",
"Linear",
"(",
"2048",
",",
"num_classes",
")"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/xception.py#L119-L160
|
||
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/pnasnet.py
| python
| pnasnet5large
| (num_classes=1001, pretrained='imagenet')
| return model
| r"""PNASNet-5 model architecture from the
`"Progressive Neural Architecture Search"
<https://arxiv.org/abs/1712.00559>`_ paper.
| r"""PNASNet-5 model architecture from the
`"Progressive Neural Architecture Search"
<https://arxiv.org/abs/1712.00559>`_ paper.
| [
"r",
"PNASNet",
"-",
"5",
"model",
"architecture",
"from",
"the",
"Progressive",
"Neural",
"Architecture",
"Search",
"<https",
":",
"//",
"arxiv",
".",
"org",
"/",
"abs",
"/",
"1712",
".",
"00559",
">",
"_",
"paper",
"."
]
| def pnasnet5large(num_classes=1001, pretrained='imagenet'):
r"""PNASNet-5 model architecture from the
`"Progressive Neural Architecture Search"
<https://arxiv.org/abs/1712.00559>`_ paper.
"""
if pretrained:
settings = pretrained_settings['pnasnet5large'][pretrained]
assert num_classes == settings[
'num_classes'], 'num_classes should be {}, but is {}'.format(
settings['num_classes'], num_classes)
# both 'imagenet'&'imagenet+background' are loaded from same parameters
model = PNASNet5Large(num_classes=1001)
model.load_state_dict(model_zoo.load_url(settings['url']))
if pretrained == 'imagenet':
new_last_linear = nn.Linear(model.last_linear.in_features, 1000)
new_last_linear.weight.data = model.last_linear.weight.data[1:]
new_last_linear.bias.data = model.last_linear.bias.data[1:]
model.last_linear = new_last_linear
model.input_space = settings['input_space']
model.input_size = settings['input_size']
model.input_range = settings['input_range']
model.mean = settings['mean']
model.std = settings['std']
else:
model = PNASNet5Large(num_classes=num_classes)
return model
| [
"def",
"pnasnet5large",
"(",
"num_classes",
"=",
"1001",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"if",
"pretrained",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'pnasnet5large'",
"]",
"[",
"pretrained",
"]",
"assert",
"num_classes",
"==",
"settings",
"[",
"'num_classes'",
"]",
",",
"'num_classes should be {}, but is {}'",
".",
"format",
"(",
"settings",
"[",
"'num_classes'",
"]",
",",
"num_classes",
")",
"# both 'imagenet'&'imagenet+background' are loaded from same parameters",
"model",
"=",
"PNASNet5Large",
"(",
"num_classes",
"=",
"1001",
")",
"model",
".",
"load_state_dict",
"(",
"model_zoo",
".",
"load_url",
"(",
"settings",
"[",
"'url'",
"]",
")",
")",
"if",
"pretrained",
"==",
"'imagenet'",
":",
"new_last_linear",
"=",
"nn",
".",
"Linear",
"(",
"model",
".",
"last_linear",
".",
"in_features",
",",
"1000",
")",
"new_last_linear",
".",
"weight",
".",
"data",
"=",
"model",
".",
"last_linear",
".",
"weight",
".",
"data",
"[",
"1",
":",
"]",
"new_last_linear",
".",
"bias",
".",
"data",
"=",
"model",
".",
"last_linear",
".",
"bias",
".",
"data",
"[",
"1",
":",
"]",
"model",
".",
"last_linear",
"=",
"new_last_linear",
"model",
".",
"input_space",
"=",
"settings",
"[",
"'input_space'",
"]",
"model",
".",
"input_size",
"=",
"settings",
"[",
"'input_size'",
"]",
"model",
".",
"input_range",
"=",
"settings",
"[",
"'input_range'",
"]",
"model",
".",
"mean",
"=",
"settings",
"[",
"'mean'",
"]",
"model",
".",
"std",
"=",
"settings",
"[",
"'std'",
"]",
"else",
":",
"model",
"=",
"PNASNet5Large",
"(",
"num_classes",
"=",
"num_classes",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/pnasnet.py#L372-L401
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/polynet.py
| python
| polynet
| (num_classes=1000, pretrained='imagenet')
| return model
| PolyNet architecture from the paper
'PolyNet: A Pursuit of Structural Diversity in Very Deep Networks'
https://arxiv.org/abs/1611.05725
| PolyNet architecture from the paper
'PolyNet: A Pursuit of Structural Diversity in Very Deep Networks'
https://arxiv.org/abs/1611.05725
| [
"PolyNet",
"architecture",
"from",
"the",
"paper",
"PolyNet",
":",
"A",
"Pursuit",
"of",
"Structural",
"Diversity",
"in",
"Very",
"Deep",
"Networks",
"https",
":",
"//",
"arxiv",
".",
"org",
"/",
"abs",
"/",
"1611",
".",
"05725"
]
| def polynet(num_classes=1000, pretrained='imagenet'):
"""PolyNet architecture from the paper
'PolyNet: A Pursuit of Structural Diversity in Very Deep Networks'
https://arxiv.org/abs/1611.05725
"""
if pretrained:
settings = pretrained_settings['polynet'][pretrained]
assert num_classes == settings['num_classes'], \
'num_classes should be {}, but is {}'.format(
settings['num_classes'], num_classes)
model = PolyNet(num_classes=num_classes)
model.load_state_dict(model_zoo.load_url(settings['url']))
model.input_space = settings['input_space']
model.input_size = settings['input_size']
model.input_range = settings['input_range']
model.mean = settings['mean']
model.std = settings['std']
else:
model = PolyNet(num_classes=num_classes)
return model
| [
"def",
"polynet",
"(",
"num_classes",
"=",
"1000",
",",
"pretrained",
"=",
"'imagenet'",
")",
":",
"if",
"pretrained",
":",
"settings",
"=",
"pretrained_settings",
"[",
"'polynet'",
"]",
"[",
"pretrained",
"]",
"assert",
"num_classes",
"==",
"settings",
"[",
"'num_classes'",
"]",
",",
"'num_classes should be {}, but is {}'",
".",
"format",
"(",
"settings",
"[",
"'num_classes'",
"]",
",",
"num_classes",
")",
"model",
"=",
"PolyNet",
"(",
"num_classes",
"=",
"num_classes",
")",
"model",
".",
"load_state_dict",
"(",
"model_zoo",
".",
"load_url",
"(",
"settings",
"[",
"'url'",
"]",
")",
")",
"model",
".",
"input_space",
"=",
"settings",
"[",
"'input_space'",
"]",
"model",
".",
"input_size",
"=",
"settings",
"[",
"'input_size'",
"]",
"model",
".",
"input_range",
"=",
"settings",
"[",
"'input_range'",
"]",
"model",
".",
"mean",
"=",
"settings",
"[",
"'mean'",
"]",
"model",
".",
"std",
"=",
"settings",
"[",
"'std'",
"]",
"else",
":",
"model",
"=",
"PolyNet",
"(",
"num_classes",
"=",
"num_classes",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/polynet.py#L461-L480
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/dpn.py
| python
| adaptive_avgmax_pool2d
| (x, pool_type='avg', padding=0, count_include_pad=False)
| return x
| Selectable global pooling function with dynamic input kernel size
| Selectable global pooling function with dynamic input kernel size
| [
"Selectable",
"global",
"pooling",
"function",
"with",
"dynamic",
"input",
"kernel",
"size"
]
| def adaptive_avgmax_pool2d(x, pool_type='avg', padding=0, count_include_pad=False):
"""Selectable global pooling function with dynamic input kernel size
"""
if pool_type == 'avgmaxc':
x = torch.cat([
F.avg_pool2d(
x, kernel_size=(x.size(2), x.size(3)), padding=padding, count_include_pad=count_include_pad),
F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding)
], dim=1)
elif pool_type == 'avgmax':
x_avg = F.avg_pool2d(
x, kernel_size=(x.size(2), x.size(3)), padding=padding, count_include_pad=count_include_pad)
x_max = F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding)
x = 0.5 * (x_avg + x_max)
elif pool_type == 'max':
x = F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding)
else:
if pool_type != 'avg':
print('Invalid pool type %s specified. Defaulting to average pooling.' % pool_type)
x = F.avg_pool2d(
x, kernel_size=(x.size(2), x.size(3)), padding=padding, count_include_pad=count_include_pad)
return x
| [
"def",
"adaptive_avgmax_pool2d",
"(",
"x",
",",
"pool_type",
"=",
"'avg'",
",",
"padding",
"=",
"0",
",",
"count_include_pad",
"=",
"False",
")",
":",
"if",
"pool_type",
"==",
"'avgmaxc'",
":",
"x",
"=",
"torch",
".",
"cat",
"(",
"[",
"F",
".",
"avg_pool2d",
"(",
"x",
",",
"kernel_size",
"=",
"(",
"x",
".",
"size",
"(",
"2",
")",
",",
"x",
".",
"size",
"(",
"3",
")",
")",
",",
"padding",
"=",
"padding",
",",
"count_include_pad",
"=",
"count_include_pad",
")",
",",
"F",
".",
"max_pool2d",
"(",
"x",
",",
"kernel_size",
"=",
"(",
"x",
".",
"size",
"(",
"2",
")",
",",
"x",
".",
"size",
"(",
"3",
")",
")",
",",
"padding",
"=",
"padding",
")",
"]",
",",
"dim",
"=",
"1",
")",
"elif",
"pool_type",
"==",
"'avgmax'",
":",
"x_avg",
"=",
"F",
".",
"avg_pool2d",
"(",
"x",
",",
"kernel_size",
"=",
"(",
"x",
".",
"size",
"(",
"2",
")",
",",
"x",
".",
"size",
"(",
"3",
")",
")",
",",
"padding",
"=",
"padding",
",",
"count_include_pad",
"=",
"count_include_pad",
")",
"x_max",
"=",
"F",
".",
"max_pool2d",
"(",
"x",
",",
"kernel_size",
"=",
"(",
"x",
".",
"size",
"(",
"2",
")",
",",
"x",
".",
"size",
"(",
"3",
")",
")",
",",
"padding",
"=",
"padding",
")",
"x",
"=",
"0.5",
"*",
"(",
"x_avg",
"+",
"x_max",
")",
"elif",
"pool_type",
"==",
"'max'",
":",
"x",
"=",
"F",
".",
"max_pool2d",
"(",
"x",
",",
"kernel_size",
"=",
"(",
"x",
".",
"size",
"(",
"2",
")",
",",
"x",
".",
"size",
"(",
"3",
")",
")",
",",
"padding",
"=",
"padding",
")",
"else",
":",
"if",
"pool_type",
"!=",
"'avg'",
":",
"print",
"(",
"'Invalid pool type %s specified. Defaulting to average pooling.'",
"%",
"pool_type",
")",
"x",
"=",
"F",
".",
"avg_pool2d",
"(",
"x",
",",
"kernel_size",
"=",
"(",
"x",
".",
"size",
"(",
"2",
")",
",",
"x",
".",
"size",
"(",
"3",
")",
")",
",",
"padding",
"=",
"padding",
",",
"count_include_pad",
"=",
"count_include_pad",
")",
"return",
"x"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/dpn.py#L407-L428
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/fbresnet/resnet152_load.py
| python
| conv3x3
| (in_planes, out_planes, stride=1)
| return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=True)
| 3x3 convolution with padding
| 3x3 convolution with padding
| [
"3x3",
"convolution",
"with",
"padding"
]
| def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=True)
| [
"def",
"conv3x3",
"(",
"in_planes",
",",
"out_planes",
",",
"stride",
"=",
"1",
")",
":",
"return",
"nn",
".",
"Conv2d",
"(",
"in_planes",
",",
"out_planes",
",",
"kernel_size",
"=",
"3",
",",
"stride",
"=",
"stride",
",",
"padding",
"=",
"1",
",",
"bias",
"=",
"True",
")"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/fbresnet/resnet152_load.py#L20-L23
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/fbresnet/resnet152_load.py
| python
| resnet18
| (pretrained=False, **kwargs)
| return model
| Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
| Constructs a ResNet-18 model.
| [
"Constructs",
"a",
"ResNet",
"-",
"18",
"model",
"."
]
| def resnet18(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model
| [
"def",
"resnet18",
"(",
"pretrained",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"model",
"=",
"ResNet",
"(",
"BasicBlock",
",",
"[",
"2",
",",
"2",
",",
"2",
",",
"2",
"]",
",",
"*",
"*",
"kwargs",
")",
"if",
"pretrained",
":",
"model",
".",
"load_state_dict",
"(",
"model_zoo",
".",
"load_url",
"(",
"model_urls",
"[",
"'resnet18'",
"]",
")",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/fbresnet/resnet152_load.py#L160-L169
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/fbresnet/resnet152_load.py
| python
| resnet34
| (pretrained=False, **kwargs)
| return model
| Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
| Constructs a ResNet-34 model.
| [
"Constructs",
"a",
"ResNet",
"-",
"34",
"model",
"."
]
| def resnet34(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
return model
| [
"def",
"resnet34",
"(",
"pretrained",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"model",
"=",
"ResNet",
"(",
"BasicBlock",
",",
"[",
"3",
",",
"4",
",",
"6",
",",
"3",
"]",
",",
"*",
"*",
"kwargs",
")",
"if",
"pretrained",
":",
"model",
".",
"load_state_dict",
"(",
"model_zoo",
".",
"load_url",
"(",
"model_urls",
"[",
"'resnet34'",
"]",
")",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/fbresnet/resnet152_load.py#L172-L181
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/fbresnet/resnet152_load.py
| python
| resnet50
| (pretrained=False, **kwargs)
| return model
| Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
| Constructs a ResNet-50 model.
| [
"Constructs",
"a",
"ResNet",
"-",
"50",
"model",
"."
]
| def resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model
| [
"def",
"resnet50",
"(",
"pretrained",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"model",
"=",
"ResNet",
"(",
"Bottleneck",
",",
"[",
"3",
",",
"4",
",",
"6",
",",
"3",
"]",
",",
"*",
"*",
"kwargs",
")",
"if",
"pretrained",
":",
"model",
".",
"load_state_dict",
"(",
"model_zoo",
".",
"load_url",
"(",
"model_urls",
"[",
"'resnet50'",
"]",
")",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/fbresnet/resnet152_load.py#L184-L193
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/fbresnet/resnet152_load.py
| python
| resnet101
| (pretrained=False, **kwargs)
| return model
| Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
| Constructs a ResNet-101 model.
| [
"Constructs",
"a",
"ResNet",
"-",
"101",
"model",
"."
]
| def resnet101(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
return model
| [
"def",
"resnet101",
"(",
"pretrained",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"model",
"=",
"ResNet",
"(",
"Bottleneck",
",",
"[",
"3",
",",
"4",
",",
"23",
",",
"3",
"]",
",",
"*",
"*",
"kwargs",
")",
"if",
"pretrained",
":",
"model",
".",
"load_state_dict",
"(",
"model_zoo",
".",
"load_url",
"(",
"model_urls",
"[",
"'resnet101'",
"]",
")",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/fbresnet/resnet152_load.py#L196-L205
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/models/fbresnet/resnet152_load.py
| python
| resnet152
| (pretrained=False, **kwargs)
| return model
| Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
| Constructs a ResNet-152 model.
| [
"Constructs",
"a",
"ResNet",
"-",
"152",
"model",
"."
]
| def resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
return model
| [
"def",
"resnet152",
"(",
"pretrained",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"model",
"=",
"ResNet",
"(",
"Bottleneck",
",",
"[",
"3",
",",
"8",
",",
"36",
",",
"3",
"]",
",",
"*",
"*",
"kwargs",
")",
"if",
"pretrained",
":",
"model",
".",
"load_state_dict",
"(",
"model_zoo",
".",
"load_url",
"(",
"model_urls",
"[",
"'resnet152'",
"]",
")",
")",
"return",
"model"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/models/fbresnet/resnet152_load.py#L208-L217
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/datasets/utils.py
| python
| download_url
| (url, destination=None, progress_bar=True)
| Download a URL to a local file.
Parameters
----------
url : str
The URL to download.
destination : str, None
The destination of the file. If None is given the file is saved to a temporary directory.
progress_bar : bool
Whether to show a command-line progress bar while downloading.
Returns
-------
filename : str
The location of the downloaded file.
Notes
-----
Progress bar use/example adapted from tqdm documentation: https://github.com/tqdm/tqdm
| Download a URL to a local file.
| [
"Download",
"a",
"URL",
"to",
"a",
"local",
"file",
"."
]
| def download_url(url, destination=None, progress_bar=True):
"""Download a URL to a local file.
Parameters
----------
url : str
The URL to download.
destination : str, None
The destination of the file. If None is given the file is saved to a temporary directory.
progress_bar : bool
Whether to show a command-line progress bar while downloading.
Returns
-------
filename : str
The location of the downloaded file.
Notes
-----
Progress bar use/example adapted from tqdm documentation: https://github.com/tqdm/tqdm
"""
def my_hook(t):
last_b = [0]
def inner(b=1, bsize=1, tsize=None):
if tsize is not None:
t.total = tsize
if b > 0:
t.update((b - last_b[0]) * bsize)
last_b[0] = b
return inner
if progress_bar:
with tqdm(unit='B', unit_scale=True, miniters=1, desc=url.split('/')[-1]) as t:
filename, _ = urlretrieve(url, filename=destination, reporthook=my_hook(t))
else:
filename, _ = urlretrieve(url, filename=destination)
| [
"def",
"download_url",
"(",
"url",
",",
"destination",
"=",
"None",
",",
"progress_bar",
"=",
"True",
")",
":",
"def",
"my_hook",
"(",
"t",
")",
":",
"last_b",
"=",
"[",
"0",
"]",
"def",
"inner",
"(",
"b",
"=",
"1",
",",
"bsize",
"=",
"1",
",",
"tsize",
"=",
"None",
")",
":",
"if",
"tsize",
"is",
"not",
"None",
":",
"t",
".",
"total",
"=",
"tsize",
"if",
"b",
">",
"0",
":",
"t",
".",
"update",
"(",
"(",
"b",
"-",
"last_b",
"[",
"0",
"]",
")",
"*",
"bsize",
")",
"last_b",
"[",
"0",
"]",
"=",
"b",
"return",
"inner",
"if",
"progress_bar",
":",
"with",
"tqdm",
"(",
"unit",
"=",
"'B'",
",",
"unit_scale",
"=",
"True",
",",
"miniters",
"=",
"1",
",",
"desc",
"=",
"url",
".",
"split",
"(",
"'/'",
")",
"[",
"-",
"1",
"]",
")",
"as",
"t",
":",
"filename",
",",
"_",
"=",
"urlretrieve",
"(",
"url",
",",
"filename",
"=",
"destination",
",",
"reporthook",
"=",
"my_hook",
"(",
"t",
")",
")",
"else",
":",
"filename",
",",
"_",
"=",
"urlretrieve",
"(",
"url",
",",
"filename",
"=",
"destination",
")"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/datasets/utils.py#L45-L83
|
||
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/datasets/utils.py
| python
| AveragePrecisionMeter.reset
| (self)
| Resets the meter with empty member variables
| Resets the meter with empty member variables
| [
"Resets",
"the",
"meter",
"with",
"empty",
"member",
"variables"
]
| def reset(self):
"""Resets the meter with empty member variables"""
self.scores = torch.FloatTensor(torch.FloatStorage())
self.targets = torch.LongTensor(torch.LongStorage())
| [
"def",
"reset",
"(",
"self",
")",
":",
"self",
".",
"scores",
"=",
"torch",
".",
"FloatTensor",
"(",
"torch",
".",
"FloatStorage",
"(",
")",
")",
"self",
".",
"targets",
"=",
"torch",
".",
"LongTensor",
"(",
"torch",
".",
"LongStorage",
"(",
")",
")"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/datasets/utils.py#L105-L108
|
||
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/datasets/utils.py
| python
| AveragePrecisionMeter.add
| (self, output, target)
| Args:
output (Tensor): NxK tensor that for each of the N examples
indicates the probability of the example belonging to each of
the K classes, according to the model. The probabilities should
sum to one over all classes
target (Tensor): binary NxK tensort that encodes which of the K
classes are associated with the N-th input
(eg: a row [0, 1, 0, 1] indicates that the example is
associated with classes 2 and 4)
weight (optional, Tensor): Nx1 tensor representing the weight for
each example (each weight > 0)
| Args:
output (Tensor): NxK tensor that for each of the N examples
indicates the probability of the example belonging to each of
the K classes, according to the model. The probabilities should
sum to one over all classes
target (Tensor): binary NxK tensort that encodes which of the K
classes are associated with the N-th input
(eg: a row [0, 1, 0, 1] indicates that the example is
associated with classes 2 and 4)
weight (optional, Tensor): Nx1 tensor representing the weight for
each example (each weight > 0)
| [
"Args",
":",
"output",
"(",
"Tensor",
")",
":",
"NxK",
"tensor",
"that",
"for",
"each",
"of",
"the",
"N",
"examples",
"indicates",
"the",
"probability",
"of",
"the",
"example",
"belonging",
"to",
"each",
"of",
"the",
"K",
"classes",
"according",
"to",
"the",
"model",
".",
"The",
"probabilities",
"should",
"sum",
"to",
"one",
"over",
"all",
"classes",
"target",
"(",
"Tensor",
")",
":",
"binary",
"NxK",
"tensort",
"that",
"encodes",
"which",
"of",
"the",
"K",
"classes",
"are",
"associated",
"with",
"the",
"N",
"-",
"th",
"input",
"(",
"eg",
":",
"a",
"row",
"[",
"0",
"1",
"0",
"1",
"]",
"indicates",
"that",
"the",
"example",
"is",
"associated",
"with",
"classes",
"2",
"and",
"4",
")",
"weight",
"(",
"optional",
"Tensor",
")",
":",
"Nx1",
"tensor",
"representing",
"the",
"weight",
"for",
"each",
"example",
"(",
"each",
"weight",
">",
"0",
")"
]
| def add(self, output, target):
"""
Args:
output (Tensor): NxK tensor that for each of the N examples
indicates the probability of the example belonging to each of
the K classes, according to the model. The probabilities should
sum to one over all classes
target (Tensor): binary NxK tensort that encodes which of the K
classes are associated with the N-th input
(eg: a row [0, 1, 0, 1] indicates that the example is
associated with classes 2 and 4)
weight (optional, Tensor): Nx1 tensor representing the weight for
each example (each weight > 0)
"""
if not torch.is_tensor(output):
output = torch.from_numpy(output)
if not torch.is_tensor(target):
target = torch.from_numpy(target)
if output.dim() == 1:
output = output.view(-1, 1)
else:
assert output.dim() == 2, \
'wrong output size (should be 1D or 2D with one column \
per class)'
if target.dim() == 1:
target = target.view(-1, 1)
else:
assert target.dim() == 2, \
'wrong target size (should be 1D or 2D with one column \
per class)'
if self.scores.numel() > 0:
assert target.size(1) == self.targets.size(1), \
'dimensions for output should match previously added examples.'
# make sure storage is of sufficient size
if self.scores.storage().size() < self.scores.numel() + output.numel():
new_size = math.ceil(self.scores.storage().size() * 1.5)
self.scores.storage().resize_(int(new_size + output.numel()))
self.targets.storage().resize_(int(new_size + output.numel()))
# store scores and targets
offset = self.scores.size(0) if self.scores.dim() > 0 else 0
self.scores.resize_(offset + output.size(0), output.size(1))
self.targets.resize_(offset + target.size(0), target.size(1))
self.scores.narrow(0, offset, output.size(0)).copy_(output)
self.targets.narrow(0, offset, target.size(0)).copy_(target)
| [
"def",
"add",
"(",
"self",
",",
"output",
",",
"target",
")",
":",
"if",
"not",
"torch",
".",
"is_tensor",
"(",
"output",
")",
":",
"output",
"=",
"torch",
".",
"from_numpy",
"(",
"output",
")",
"if",
"not",
"torch",
".",
"is_tensor",
"(",
"target",
")",
":",
"target",
"=",
"torch",
".",
"from_numpy",
"(",
"target",
")",
"if",
"output",
".",
"dim",
"(",
")",
"==",
"1",
":",
"output",
"=",
"output",
".",
"view",
"(",
"-",
"1",
",",
"1",
")",
"else",
":",
"assert",
"output",
".",
"dim",
"(",
")",
"==",
"2",
",",
"'wrong output size (should be 1D or 2D with one column \\\n per class)'",
"if",
"target",
".",
"dim",
"(",
")",
"==",
"1",
":",
"target",
"=",
"target",
".",
"view",
"(",
"-",
"1",
",",
"1",
")",
"else",
":",
"assert",
"target",
".",
"dim",
"(",
")",
"==",
"2",
",",
"'wrong target size (should be 1D or 2D with one column \\\n per class)'",
"if",
"self",
".",
"scores",
".",
"numel",
"(",
")",
">",
"0",
":",
"assert",
"target",
".",
"size",
"(",
"1",
")",
"==",
"self",
".",
"targets",
".",
"size",
"(",
"1",
")",
",",
"'dimensions for output should match previously added examples.'",
"# make sure storage is of sufficient size",
"if",
"self",
".",
"scores",
".",
"storage",
"(",
")",
".",
"size",
"(",
")",
"<",
"self",
".",
"scores",
".",
"numel",
"(",
")",
"+",
"output",
".",
"numel",
"(",
")",
":",
"new_size",
"=",
"math",
".",
"ceil",
"(",
"self",
".",
"scores",
".",
"storage",
"(",
")",
".",
"size",
"(",
")",
"*",
"1.5",
")",
"self",
".",
"scores",
".",
"storage",
"(",
")",
".",
"resize_",
"(",
"int",
"(",
"new_size",
"+",
"output",
".",
"numel",
"(",
")",
")",
")",
"self",
".",
"targets",
".",
"storage",
"(",
")",
".",
"resize_",
"(",
"int",
"(",
"new_size",
"+",
"output",
".",
"numel",
"(",
")",
")",
")",
"# store scores and targets",
"offset",
"=",
"self",
".",
"scores",
".",
"size",
"(",
"0",
")",
"if",
"self",
".",
"scores",
".",
"dim",
"(",
")",
">",
"0",
"else",
"0",
"self",
".",
"scores",
".",
"resize_",
"(",
"offset",
"+",
"output",
".",
"size",
"(",
"0",
")",
",",
"output",
".",
"size",
"(",
"1",
")",
")",
"self",
".",
"targets",
".",
"resize_",
"(",
"offset",
"+",
"target",
".",
"size",
"(",
"0",
")",
",",
"target",
".",
"size",
"(",
"1",
")",
")",
"self",
".",
"scores",
".",
"narrow",
"(",
"0",
",",
"offset",
",",
"output",
".",
"size",
"(",
"0",
")",
")",
".",
"copy_",
"(",
"output",
")",
"self",
".",
"targets",
".",
"narrow",
"(",
"0",
",",
"offset",
",",
"target",
".",
"size",
"(",
"0",
")",
")",
".",
"copy_",
"(",
"target",
")"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/datasets/utils.py#L110-L156
|
||
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| pretrainedmodels/datasets/utils.py
| python
| AveragePrecisionMeter.value
| (self)
| return ap
| Returns the model's average precision for each class
Return:
ap (FloatTensor): 1xK tensor, with avg precision for each class k
| Returns the model's average precision for each class
Return:
ap (FloatTensor): 1xK tensor, with avg precision for each class k
| [
"Returns",
"the",
"model",
"s",
"average",
"precision",
"for",
"each",
"class",
"Return",
":",
"ap",
"(",
"FloatTensor",
")",
":",
"1xK",
"tensor",
"with",
"avg",
"precision",
"for",
"each",
"class",
"k"
]
| def value(self):
"""Returns the model's average precision for each class
Return:
ap (FloatTensor): 1xK tensor, with avg precision for each class k
"""
if self.scores.numel() == 0:
return 0
ap = torch.zeros(self.scores.size(1))
rg = torch.arange(1, self.scores.size(0)).float()
# compute average precision for each class
for k in range(self.scores.size(1)):
# sort scores
scores = self.scores[:, k]
targets = self.targets[:, k]
# compute average precision
ap[k] = AveragePrecisionMeter.average_precision(scores, targets, self.difficult_examples)
return ap
| [
"def",
"value",
"(",
"self",
")",
":",
"if",
"self",
".",
"scores",
".",
"numel",
"(",
")",
"==",
"0",
":",
"return",
"0",
"ap",
"=",
"torch",
".",
"zeros",
"(",
"self",
".",
"scores",
".",
"size",
"(",
"1",
")",
")",
"rg",
"=",
"torch",
".",
"arange",
"(",
"1",
",",
"self",
".",
"scores",
".",
"size",
"(",
"0",
")",
")",
".",
"float",
"(",
")",
"# compute average precision for each class",
"for",
"k",
"in",
"range",
"(",
"self",
".",
"scores",
".",
"size",
"(",
"1",
")",
")",
":",
"# sort scores",
"scores",
"=",
"self",
".",
"scores",
"[",
":",
",",
"k",
"]",
"targets",
"=",
"self",
".",
"targets",
"[",
":",
",",
"k",
"]",
"# compute average precision",
"ap",
"[",
"k",
"]",
"=",
"AveragePrecisionMeter",
".",
"average_precision",
"(",
"scores",
",",
"targets",
",",
"self",
".",
"difficult_examples",
")",
"return",
"ap"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/pretrainedmodels/datasets/utils.py#L158-L177
|
|
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| examples/imagenet_eval.py
| python
| adjust_learning_rate
| (optimizer, epoch)
| Sets the learning rate to the initial LR decayed by 10 every 30 epochs
| Sets the learning rate to the initial LR decayed by 10 every 30 epochs
| [
"Sets",
"the",
"learning",
"rate",
"to",
"the",
"initial",
"LR",
"decayed",
"by",
"10",
"every",
"30",
"epochs"
]
| def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
| [
"def",
"adjust_learning_rate",
"(",
"optimizer",
",",
"epoch",
")",
":",
"lr",
"=",
"args",
".",
"lr",
"*",
"(",
"0.1",
"**",
"(",
"epoch",
"//",
"30",
")",
")",
"for",
"param_group",
"in",
"optimizer",
".",
"param_groups",
":",
"param_group",
"[",
"'lr'",
"]",
"=",
"lr"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/examples/imagenet_eval.py#L280-L284
|
||
Cadene/pretrained-models.pytorch
| 8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0
| examples/imagenet_eval.py
| python
| accuracy
| (output, target, topk=(1,))
| return res
| Computes the precision@k for the specified values of k
| Computes the precision
| [
"Computes",
"the",
"precision"
]
| def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
| [
"def",
"accuracy",
"(",
"output",
",",
"target",
",",
"topk",
"=",
"(",
"1",
",",
")",
")",
":",
"maxk",
"=",
"max",
"(",
"topk",
")",
"batch_size",
"=",
"target",
".",
"size",
"(",
"0",
")",
"_",
",",
"pred",
"=",
"output",
".",
"topk",
"(",
"maxk",
",",
"1",
",",
"True",
",",
"True",
")",
"pred",
"=",
"pred",
".",
"t",
"(",
")",
"correct",
"=",
"pred",
".",
"eq",
"(",
"target",
".",
"view",
"(",
"1",
",",
"-",
"1",
")",
".",
"expand_as",
"(",
"pred",
")",
")",
"res",
"=",
"[",
"]",
"for",
"k",
"in",
"topk",
":",
"correct_k",
"=",
"correct",
"[",
":",
"k",
"]",
".",
"view",
"(",
"-",
"1",
")",
".",
"float",
"(",
")",
".",
"sum",
"(",
"0",
")",
"res",
".",
"append",
"(",
"correct_k",
".",
"mul_",
"(",
"100.0",
"/",
"batch_size",
")",
")",
"return",
"res"
]
| https://github.com/Cadene/pretrained-models.pytorch/blob/8aae3d8f1135b6b13fed79c1d431e3449fdbf6e0/examples/imagenet_eval.py#L287-L300
|
|
huggingface/pytorch-pretrained-BigGAN
| 1e18aed2dff75db51428f13b940c38b923eb4a3d
| pytorch_pretrained_biggan/utils.py
| python
| truncated_noise_sample
| (batch_size=1, dim_z=128, truncation=1., seed=None)
| return truncation * values
| Create a truncated noise vector.
Params:
batch_size: batch size.
dim_z: dimension of z
truncation: truncation value to use
seed: seed for the random generator
Output:
array of shape (batch_size, dim_z)
| Create a truncated noise vector.
Params:
batch_size: batch size.
dim_z: dimension of z
truncation: truncation value to use
seed: seed for the random generator
Output:
array of shape (batch_size, dim_z)
| [
"Create",
"a",
"truncated",
"noise",
"vector",
".",
"Params",
":",
"batch_size",
":",
"batch",
"size",
".",
"dim_z",
":",
"dimension",
"of",
"z",
"truncation",
":",
"truncation",
"value",
"to",
"use",
"seed",
":",
"seed",
"for",
"the",
"random",
"generator",
"Output",
":",
"array",
"of",
"shape",
"(",
"batch_size",
"dim_z",
")"
]
| def truncated_noise_sample(batch_size=1, dim_z=128, truncation=1., seed=None):
""" Create a truncated noise vector.
Params:
batch_size: batch size.
dim_z: dimension of z
truncation: truncation value to use
seed: seed for the random generator
Output:
array of shape (batch_size, dim_z)
"""
state = None if seed is None else np.random.RandomState(seed)
values = truncnorm.rvs(-2, 2, size=(batch_size, dim_z), random_state=state).astype(np.float32)
return truncation * values
| [
"def",
"truncated_noise_sample",
"(",
"batch_size",
"=",
"1",
",",
"dim_z",
"=",
"128",
",",
"truncation",
"=",
"1.",
",",
"seed",
"=",
"None",
")",
":",
"state",
"=",
"None",
"if",
"seed",
"is",
"None",
"else",
"np",
".",
"random",
".",
"RandomState",
"(",
"seed",
")",
"values",
"=",
"truncnorm",
".",
"rvs",
"(",
"-",
"2",
",",
"2",
",",
"size",
"=",
"(",
"batch_size",
",",
"dim_z",
")",
",",
"random_state",
"=",
"state",
")",
".",
"astype",
"(",
"np",
".",
"float32",
")",
"return",
"truncation",
"*",
"values"
]
| https://github.com/huggingface/pytorch-pretrained-BigGAN/blob/1e18aed2dff75db51428f13b940c38b923eb4a3d/pytorch_pretrained_biggan/utils.py#L21-L33
|
|
huggingface/pytorch-pretrained-BigGAN
| 1e18aed2dff75db51428f13b940c38b923eb4a3d
| pytorch_pretrained_biggan/utils.py
| python
| convert_to_images
| (obj)
| return img
| Convert an output tensor from BigGAN in a list of images.
Params:
obj: tensor or numpy array of shape (batch_size, channels, height, width)
Output:
list of Pillow Images of size (height, width)
| Convert an output tensor from BigGAN in a list of images.
Params:
obj: tensor or numpy array of shape (batch_size, channels, height, width)
Output:
list of Pillow Images of size (height, width)
| [
"Convert",
"an",
"output",
"tensor",
"from",
"BigGAN",
"in",
"a",
"list",
"of",
"images",
".",
"Params",
":",
"obj",
":",
"tensor",
"or",
"numpy",
"array",
"of",
"shape",
"(",
"batch_size",
"channels",
"height",
"width",
")",
"Output",
":",
"list",
"of",
"Pillow",
"Images",
"of",
"size",
"(",
"height",
"width",
")"
]
| def convert_to_images(obj):
""" Convert an output tensor from BigGAN in a list of images.
Params:
obj: tensor or numpy array of shape (batch_size, channels, height, width)
Output:
list of Pillow Images of size (height, width)
"""
try:
import PIL
except ImportError:
raise ImportError("Please install Pillow to use images: pip install Pillow")
if not isinstance(obj, np.ndarray):
obj = obj.detach().numpy()
obj = obj.transpose((0, 2, 3, 1))
obj = np.clip(((obj + 1) / 2.0) * 256, 0, 255)
img = []
for i, out in enumerate(obj):
out_array = np.asarray(np.uint8(out), dtype=np.uint8)
img.append(PIL.Image.fromarray(out_array))
return img
| [
"def",
"convert_to_images",
"(",
"obj",
")",
":",
"try",
":",
"import",
"PIL",
"except",
"ImportError",
":",
"raise",
"ImportError",
"(",
"\"Please install Pillow to use images: pip install Pillow\"",
")",
"if",
"not",
"isinstance",
"(",
"obj",
",",
"np",
".",
"ndarray",
")",
":",
"obj",
"=",
"obj",
".",
"detach",
"(",
")",
".",
"numpy",
"(",
")",
"obj",
"=",
"obj",
".",
"transpose",
"(",
"(",
"0",
",",
"2",
",",
"3",
",",
"1",
")",
")",
"obj",
"=",
"np",
".",
"clip",
"(",
"(",
"(",
"obj",
"+",
"1",
")",
"/",
"2.0",
")",
"*",
"256",
",",
"0",
",",
"255",
")",
"img",
"=",
"[",
"]",
"for",
"i",
",",
"out",
"in",
"enumerate",
"(",
"obj",
")",
":",
"out_array",
"=",
"np",
".",
"asarray",
"(",
"np",
".",
"uint8",
"(",
"out",
")",
",",
"dtype",
"=",
"np",
".",
"uint8",
")",
"img",
".",
"append",
"(",
"PIL",
".",
"Image",
".",
"fromarray",
"(",
"out_array",
")",
")",
"return",
"img"
]
| https://github.com/huggingface/pytorch-pretrained-BigGAN/blob/1e18aed2dff75db51428f13b940c38b923eb4a3d/pytorch_pretrained_biggan/utils.py#L36-L58
|
|
huggingface/pytorch-pretrained-BigGAN
| 1e18aed2dff75db51428f13b940c38b923eb4a3d
| pytorch_pretrained_biggan/utils.py
| python
| save_as_images
| (obj, file_name='output')
| Convert and save an output tensor from BigGAN in a list of saved images.
Params:
obj: tensor or numpy array of shape (batch_size, channels, height, width)
file_name: path and beggingin of filename to save.
Images will be saved as `file_name_{image_number}.png`
| Convert and save an output tensor from BigGAN in a list of saved images.
Params:
obj: tensor or numpy array of shape (batch_size, channels, height, width)
file_name: path and beggingin of filename to save.
Images will be saved as `file_name_{image_number}.png`
| [
"Convert",
"and",
"save",
"an",
"output",
"tensor",
"from",
"BigGAN",
"in",
"a",
"list",
"of",
"saved",
"images",
".",
"Params",
":",
"obj",
":",
"tensor",
"or",
"numpy",
"array",
"of",
"shape",
"(",
"batch_size",
"channels",
"height",
"width",
")",
"file_name",
":",
"path",
"and",
"beggingin",
"of",
"filename",
"to",
"save",
".",
"Images",
"will",
"be",
"saved",
"as",
"file_name_",
"{",
"image_number",
"}",
".",
"png"
]
| def save_as_images(obj, file_name='output'):
""" Convert and save an output tensor from BigGAN in a list of saved images.
Params:
obj: tensor or numpy array of shape (batch_size, channels, height, width)
file_name: path and beggingin of filename to save.
Images will be saved as `file_name_{image_number}.png`
"""
img = convert_to_images(obj)
for i, out in enumerate(img):
current_file_name = file_name + '_%d.png' % i
logger.info("Saving image to {}".format(current_file_name))
out.save(current_file_name, 'png')
| [
"def",
"save_as_images",
"(",
"obj",
",",
"file_name",
"=",
"'output'",
")",
":",
"img",
"=",
"convert_to_images",
"(",
"obj",
")",
"for",
"i",
",",
"out",
"in",
"enumerate",
"(",
"img",
")",
":",
"current_file_name",
"=",
"file_name",
"+",
"'_%d.png'",
"%",
"i",
"logger",
".",
"info",
"(",
"\"Saving image to {}\"",
".",
"format",
"(",
"current_file_name",
")",
")",
"out",
".",
"save",
"(",
"current_file_name",
",",
"'png'",
")"
]
| https://github.com/huggingface/pytorch-pretrained-BigGAN/blob/1e18aed2dff75db51428f13b940c38b923eb4a3d/pytorch_pretrained_biggan/utils.py#L61-L73
|
||
huggingface/pytorch-pretrained-BigGAN
| 1e18aed2dff75db51428f13b940c38b923eb4a3d
| pytorch_pretrained_biggan/utils.py
| python
| display_in_terminal
| (obj)
| Convert and display an output tensor from BigGAN in the terminal.
This function use `libsixel` and will only work in a libsixel-compatible terminal.
Please refer to https://github.com/saitoha/libsixel for more details.
Params:
obj: tensor or numpy array of shape (batch_size, channels, height, width)
file_name: path and beggingin of filename to save.
Images will be saved as `file_name_{image_number}.png`
| Convert and display an output tensor from BigGAN in the terminal.
This function use `libsixel` and will only work in a libsixel-compatible terminal.
Please refer to https://github.com/saitoha/libsixel for more details.
| [
"Convert",
"and",
"display",
"an",
"output",
"tensor",
"from",
"BigGAN",
"in",
"the",
"terminal",
".",
"This",
"function",
"use",
"libsixel",
"and",
"will",
"only",
"work",
"in",
"a",
"libsixel",
"-",
"compatible",
"terminal",
".",
"Please",
"refer",
"to",
"https",
":",
"//",
"github",
".",
"com",
"/",
"saitoha",
"/",
"libsixel",
"for",
"more",
"details",
"."
]
| def display_in_terminal(obj):
""" Convert and display an output tensor from BigGAN in the terminal.
This function use `libsixel` and will only work in a libsixel-compatible terminal.
Please refer to https://github.com/saitoha/libsixel for more details.
Params:
obj: tensor or numpy array of shape (batch_size, channels, height, width)
file_name: path and beggingin of filename to save.
Images will be saved as `file_name_{image_number}.png`
"""
try:
import PIL
from libsixel import (sixel_output_new, sixel_dither_new, sixel_dither_initialize,
sixel_dither_set_palette, sixel_dither_set_pixelformat,
sixel_dither_get, sixel_encode, sixel_dither_unref,
sixel_output_unref, SIXEL_PIXELFORMAT_RGBA8888,
SIXEL_PIXELFORMAT_RGB888, SIXEL_PIXELFORMAT_PAL8,
SIXEL_PIXELFORMAT_G8, SIXEL_PIXELFORMAT_G1)
except ImportError:
raise ImportError("Display in Terminal requires Pillow, libsixel "
"and a libsixel compatible terminal. "
"Please read info at https://github.com/saitoha/libsixel "
"and install with pip install Pillow libsixel-python")
s = BytesIO()
images = convert_to_images(obj)
widths, heights = zip(*(i.size for i in images))
output_width = sum(widths)
output_height = max(heights)
output_image = PIL.Image.new('RGB', (output_width, output_height))
x_offset = 0
for im in images:
output_image.paste(im, (x_offset,0))
x_offset += im.size[0]
try:
data = output_image.tobytes()
except NotImplementedError:
data = output_image.tostring()
output = sixel_output_new(lambda data, s: s.write(data), s)
try:
if output_image.mode == 'RGBA':
dither = sixel_dither_new(256)
sixel_dither_initialize(dither, data, output_width, output_height, SIXEL_PIXELFORMAT_RGBA8888)
elif output_image.mode == 'RGB':
dither = sixel_dither_new(256)
sixel_dither_initialize(dither, data, output_width, output_height, SIXEL_PIXELFORMAT_RGB888)
elif output_image.mode == 'P':
palette = output_image.getpalette()
dither = sixel_dither_new(256)
sixel_dither_set_palette(dither, palette)
sixel_dither_set_pixelformat(dither, SIXEL_PIXELFORMAT_PAL8)
elif output_image.mode == 'L':
dither = sixel_dither_get(SIXEL_BUILTIN_G8)
sixel_dither_set_pixelformat(dither, SIXEL_PIXELFORMAT_G8)
elif output_image.mode == '1':
dither = sixel_dither_get(SIXEL_BUILTIN_G1)
sixel_dither_set_pixelformat(dither, SIXEL_PIXELFORMAT_G1)
else:
raise RuntimeError('unexpected output_image mode')
try:
sixel_encode(data, output_width, output_height, 1, dither, output)
print(s.getvalue().decode('ascii'))
finally:
sixel_dither_unref(dither)
finally:
sixel_output_unref(output)
| [
"def",
"display_in_terminal",
"(",
"obj",
")",
":",
"try",
":",
"import",
"PIL",
"from",
"libsixel",
"import",
"(",
"sixel_output_new",
",",
"sixel_dither_new",
",",
"sixel_dither_initialize",
",",
"sixel_dither_set_palette",
",",
"sixel_dither_set_pixelformat",
",",
"sixel_dither_get",
",",
"sixel_encode",
",",
"sixel_dither_unref",
",",
"sixel_output_unref",
",",
"SIXEL_PIXELFORMAT_RGBA8888",
",",
"SIXEL_PIXELFORMAT_RGB888",
",",
"SIXEL_PIXELFORMAT_PAL8",
",",
"SIXEL_PIXELFORMAT_G8",
",",
"SIXEL_PIXELFORMAT_G1",
")",
"except",
"ImportError",
":",
"raise",
"ImportError",
"(",
"\"Display in Terminal requires Pillow, libsixel \"",
"\"and a libsixel compatible terminal. \"",
"\"Please read info at https://github.com/saitoha/libsixel \"",
"\"and install with pip install Pillow libsixel-python\"",
")",
"s",
"=",
"BytesIO",
"(",
")",
"images",
"=",
"convert_to_images",
"(",
"obj",
")",
"widths",
",",
"heights",
"=",
"zip",
"(",
"*",
"(",
"i",
".",
"size",
"for",
"i",
"in",
"images",
")",
")",
"output_width",
"=",
"sum",
"(",
"widths",
")",
"output_height",
"=",
"max",
"(",
"heights",
")",
"output_image",
"=",
"PIL",
".",
"Image",
".",
"new",
"(",
"'RGB'",
",",
"(",
"output_width",
",",
"output_height",
")",
")",
"x_offset",
"=",
"0",
"for",
"im",
"in",
"images",
":",
"output_image",
".",
"paste",
"(",
"im",
",",
"(",
"x_offset",
",",
"0",
")",
")",
"x_offset",
"+=",
"im",
".",
"size",
"[",
"0",
"]",
"try",
":",
"data",
"=",
"output_image",
".",
"tobytes",
"(",
")",
"except",
"NotImplementedError",
":",
"data",
"=",
"output_image",
".",
"tostring",
"(",
")",
"output",
"=",
"sixel_output_new",
"(",
"lambda",
"data",
",",
"s",
":",
"s",
".",
"write",
"(",
"data",
")",
",",
"s",
")",
"try",
":",
"if",
"output_image",
".",
"mode",
"==",
"'RGBA'",
":",
"dither",
"=",
"sixel_dither_new",
"(",
"256",
")",
"sixel_dither_initialize",
"(",
"dither",
",",
"data",
",",
"output_width",
",",
"output_height",
",",
"SIXEL_PIXELFORMAT_RGBA8888",
")",
"elif",
"output_image",
".",
"mode",
"==",
"'RGB'",
":",
"dither",
"=",
"sixel_dither_new",
"(",
"256",
")",
"sixel_dither_initialize",
"(",
"dither",
",",
"data",
",",
"output_width",
",",
"output_height",
",",
"SIXEL_PIXELFORMAT_RGB888",
")",
"elif",
"output_image",
".",
"mode",
"==",
"'P'",
":",
"palette",
"=",
"output_image",
".",
"getpalette",
"(",
")",
"dither",
"=",
"sixel_dither_new",
"(",
"256",
")",
"sixel_dither_set_palette",
"(",
"dither",
",",
"palette",
")",
"sixel_dither_set_pixelformat",
"(",
"dither",
",",
"SIXEL_PIXELFORMAT_PAL8",
")",
"elif",
"output_image",
".",
"mode",
"==",
"'L'",
":",
"dither",
"=",
"sixel_dither_get",
"(",
"SIXEL_BUILTIN_G8",
")",
"sixel_dither_set_pixelformat",
"(",
"dither",
",",
"SIXEL_PIXELFORMAT_G8",
")",
"elif",
"output_image",
".",
"mode",
"==",
"'1'",
":",
"dither",
"=",
"sixel_dither_get",
"(",
"SIXEL_BUILTIN_G1",
")",
"sixel_dither_set_pixelformat",
"(",
"dither",
",",
"SIXEL_PIXELFORMAT_G1",
")",
"else",
":",
"raise",
"RuntimeError",
"(",
"'unexpected output_image mode'",
")",
"try",
":",
"sixel_encode",
"(",
"data",
",",
"output_width",
",",
"output_height",
",",
"1",
",",
"dither",
",",
"output",
")",
"print",
"(",
"s",
".",
"getvalue",
"(",
")",
".",
"decode",
"(",
"'ascii'",
")",
")",
"finally",
":",
"sixel_dither_unref",
"(",
"dither",
")",
"finally",
":",
"sixel_output_unref",
"(",
"output",
")"
]
| https://github.com/huggingface/pytorch-pretrained-BigGAN/blob/1e18aed2dff75db51428f13b940c38b923eb4a3d/pytorch_pretrained_biggan/utils.py#L76-L147
|
||
huggingface/pytorch-pretrained-BigGAN
| 1e18aed2dff75db51428f13b940c38b923eb4a3d
| pytorch_pretrained_biggan/utils.py
| python
| one_hot_from_int
| (int_or_list, batch_size=1)
| return array
| Create a one-hot vector from a class index or a list of class indices.
Params:
int_or_list: int, or list of int, of the imagenet classes (between 0 and 999)
batch_size: batch size.
If int_or_list is an int create a batch of identical classes.
If int_or_list is a list, we should have `len(int_or_list) == batch_size`
Output:
array of shape (batch_size, 1000)
| Create a one-hot vector from a class index or a list of class indices.
Params:
int_or_list: int, or list of int, of the imagenet classes (between 0 and 999)
batch_size: batch size.
If int_or_list is an int create a batch of identical classes.
If int_or_list is a list, we should have `len(int_or_list) == batch_size`
Output:
array of shape (batch_size, 1000)
| [
"Create",
"a",
"one",
"-",
"hot",
"vector",
"from",
"a",
"class",
"index",
"or",
"a",
"list",
"of",
"class",
"indices",
".",
"Params",
":",
"int_or_list",
":",
"int",
"or",
"list",
"of",
"int",
"of",
"the",
"imagenet",
"classes",
"(",
"between",
"0",
"and",
"999",
")",
"batch_size",
":",
"batch",
"size",
".",
"If",
"int_or_list",
"is",
"an",
"int",
"create",
"a",
"batch",
"of",
"identical",
"classes",
".",
"If",
"int_or_list",
"is",
"a",
"list",
"we",
"should",
"have",
"len",
"(",
"int_or_list",
")",
"==",
"batch_size",
"Output",
":",
"array",
"of",
"shape",
"(",
"batch_size",
"1000",
")"
]
| def one_hot_from_int(int_or_list, batch_size=1):
""" Create a one-hot vector from a class index or a list of class indices.
Params:
int_or_list: int, or list of int, of the imagenet classes (between 0 and 999)
batch_size: batch size.
If int_or_list is an int create a batch of identical classes.
If int_or_list is a list, we should have `len(int_or_list) == batch_size`
Output:
array of shape (batch_size, 1000)
"""
if isinstance(int_or_list, int):
int_or_list = [int_or_list]
if len(int_or_list) == 1 and batch_size > 1:
int_or_list = [int_or_list[0]] * batch_size
assert batch_size == len(int_or_list)
array = np.zeros((batch_size, NUM_CLASSES), dtype=np.float32)
for i, j in enumerate(int_or_list):
array[i, j] = 1.0
return array
| [
"def",
"one_hot_from_int",
"(",
"int_or_list",
",",
"batch_size",
"=",
"1",
")",
":",
"if",
"isinstance",
"(",
"int_or_list",
",",
"int",
")",
":",
"int_or_list",
"=",
"[",
"int_or_list",
"]",
"if",
"len",
"(",
"int_or_list",
")",
"==",
"1",
"and",
"batch_size",
">",
"1",
":",
"int_or_list",
"=",
"[",
"int_or_list",
"[",
"0",
"]",
"]",
"*",
"batch_size",
"assert",
"batch_size",
"==",
"len",
"(",
"int_or_list",
")",
"array",
"=",
"np",
".",
"zeros",
"(",
"(",
"batch_size",
",",
"NUM_CLASSES",
")",
",",
"dtype",
"=",
"np",
".",
"float32",
")",
"for",
"i",
",",
"j",
"in",
"enumerate",
"(",
"int_or_list",
")",
":",
"array",
"[",
"i",
",",
"j",
"]",
"=",
"1.0",
"return",
"array"
]
| https://github.com/huggingface/pytorch-pretrained-BigGAN/blob/1e18aed2dff75db51428f13b940c38b923eb4a3d/pytorch_pretrained_biggan/utils.py#L150-L171
|
|
huggingface/pytorch-pretrained-BigGAN
| 1e18aed2dff75db51428f13b940c38b923eb4a3d
| pytorch_pretrained_biggan/utils.py
| python
| one_hot_from_names
| (class_name_or_list, batch_size=1)
| return one_hot_from_int(classes, batch_size=batch_size)
| Create a one-hot vector from the name of an imagenet class ('tennis ball', 'daisy', ...).
We use NLTK's wordnet search to try to find the relevant synset of ImageNet and take the first one.
If we can't find it direcly, we look at the hyponyms and hypernyms of the class name.
Params:
class_name_or_list: string containing the name of an imagenet object or a list of such strings (for a batch).
Output:
array of shape (batch_size, 1000)
| Create a one-hot vector from the name of an imagenet class ('tennis ball', 'daisy', ...).
We use NLTK's wordnet search to try to find the relevant synset of ImageNet and take the first one.
If we can't find it direcly, we look at the hyponyms and hypernyms of the class name.
| [
"Create",
"a",
"one",
"-",
"hot",
"vector",
"from",
"the",
"name",
"of",
"an",
"imagenet",
"class",
"(",
"tennis",
"ball",
"daisy",
"...",
")",
".",
"We",
"use",
"NLTK",
"s",
"wordnet",
"search",
"to",
"try",
"to",
"find",
"the",
"relevant",
"synset",
"of",
"ImageNet",
"and",
"take",
"the",
"first",
"one",
".",
"If",
"we",
"can",
"t",
"find",
"it",
"direcly",
"we",
"look",
"at",
"the",
"hyponyms",
"and",
"hypernyms",
"of",
"the",
"class",
"name",
"."
]
| def one_hot_from_names(class_name_or_list, batch_size=1):
""" Create a one-hot vector from the name of an imagenet class ('tennis ball', 'daisy', ...).
We use NLTK's wordnet search to try to find the relevant synset of ImageNet and take the first one.
If we can't find it direcly, we look at the hyponyms and hypernyms of the class name.
Params:
class_name_or_list: string containing the name of an imagenet object or a list of such strings (for a batch).
Output:
array of shape (batch_size, 1000)
"""
try:
from nltk.corpus import wordnet as wn
except ImportError:
raise ImportError("You need to install nltk to use this function")
if not isinstance(class_name_or_list, (list, tuple)):
class_name_or_list = [class_name_or_list]
else:
batch_size = max(batch_size, len(class_name_or_list))
classes = []
for class_name in class_name_or_list:
class_name = class_name.replace(" ", "_")
original_synsets = wn.synsets(class_name)
original_synsets = list(filter(lambda s: s.pos() == 'n', original_synsets)) # keep only names
if not original_synsets:
return None
possible_synsets = list(filter(lambda s: s.offset() in IMAGENET, original_synsets))
if possible_synsets:
classes.append(IMAGENET[possible_synsets[0].offset()])
else:
# try hypernyms and hyponyms
possible_synsets = sum([s.hypernyms() + s.hyponyms() for s in original_synsets], [])
possible_synsets = list(filter(lambda s: s.offset() in IMAGENET, possible_synsets))
if possible_synsets:
classes.append(IMAGENET[possible_synsets[0].offset()])
return one_hot_from_int(classes, batch_size=batch_size)
| [
"def",
"one_hot_from_names",
"(",
"class_name_or_list",
",",
"batch_size",
"=",
"1",
")",
":",
"try",
":",
"from",
"nltk",
".",
"corpus",
"import",
"wordnet",
"as",
"wn",
"except",
"ImportError",
":",
"raise",
"ImportError",
"(",
"\"You need to install nltk to use this function\"",
")",
"if",
"not",
"isinstance",
"(",
"class_name_or_list",
",",
"(",
"list",
",",
"tuple",
")",
")",
":",
"class_name_or_list",
"=",
"[",
"class_name_or_list",
"]",
"else",
":",
"batch_size",
"=",
"max",
"(",
"batch_size",
",",
"len",
"(",
"class_name_or_list",
")",
")",
"classes",
"=",
"[",
"]",
"for",
"class_name",
"in",
"class_name_or_list",
":",
"class_name",
"=",
"class_name",
".",
"replace",
"(",
"\" \"",
",",
"\"_\"",
")",
"original_synsets",
"=",
"wn",
".",
"synsets",
"(",
"class_name",
")",
"original_synsets",
"=",
"list",
"(",
"filter",
"(",
"lambda",
"s",
":",
"s",
".",
"pos",
"(",
")",
"==",
"'n'",
",",
"original_synsets",
")",
")",
"# keep only names",
"if",
"not",
"original_synsets",
":",
"return",
"None",
"possible_synsets",
"=",
"list",
"(",
"filter",
"(",
"lambda",
"s",
":",
"s",
".",
"offset",
"(",
")",
"in",
"IMAGENET",
",",
"original_synsets",
")",
")",
"if",
"possible_synsets",
":",
"classes",
".",
"append",
"(",
"IMAGENET",
"[",
"possible_synsets",
"[",
"0",
"]",
".",
"offset",
"(",
")",
"]",
")",
"else",
":",
"# try hypernyms and hyponyms",
"possible_synsets",
"=",
"sum",
"(",
"[",
"s",
".",
"hypernyms",
"(",
")",
"+",
"s",
".",
"hyponyms",
"(",
")",
"for",
"s",
"in",
"original_synsets",
"]",
",",
"[",
"]",
")",
"possible_synsets",
"=",
"list",
"(",
"filter",
"(",
"lambda",
"s",
":",
"s",
".",
"offset",
"(",
")",
"in",
"IMAGENET",
",",
"possible_synsets",
")",
")",
"if",
"possible_synsets",
":",
"classes",
".",
"append",
"(",
"IMAGENET",
"[",
"possible_synsets",
"[",
"0",
"]",
".",
"offset",
"(",
")",
"]",
")",
"return",
"one_hot_from_int",
"(",
"classes",
",",
"batch_size",
"=",
"batch_size",
")"
]
| https://github.com/huggingface/pytorch-pretrained-BigGAN/blob/1e18aed2dff75db51428f13b940c38b923eb4a3d/pytorch_pretrained_biggan/utils.py#L174-L213
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-06-model-serving-api/house-prices-api/app/api.py
| python
| health
| ()
| return health.dict()
| Root Get
| Root Get
| [
"Root",
"Get"
]
| def health() -> dict:
"""
Root Get
"""
health = schemas.Health(
name=settings.PROJECT_NAME, api_version=__version__, model_version=model_version
)
return health.dict()
| [
"def",
"health",
"(",
")",
"->",
"dict",
":",
"health",
"=",
"schemas",
".",
"Health",
"(",
"name",
"=",
"settings",
".",
"PROJECT_NAME",
",",
"api_version",
"=",
"__version__",
",",
"model_version",
"=",
"model_version",
")",
"return",
"health",
".",
"dict",
"(",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-06-model-serving-api/house-prices-api/app/api.py#L19-L27
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-06-model-serving-api/house-prices-api/app/api.py
| python
| predict
| (input_data: schemas.MultipleHouseDataInputs)
| return results
| Make house price predictions with the TID regression model
| Make house price predictions with the TID regression model
| [
"Make",
"house",
"price",
"predictions",
"with",
"the",
"TID",
"regression",
"model"
]
| async def predict(input_data: schemas.MultipleHouseDataInputs) -> Any:
"""
Make house price predictions with the TID regression model
"""
input_df = pd.DataFrame(jsonable_encoder(input_data.inputs))
# Advanced: You can improve performance of your API by rewriting the
# `make prediction` function to be async and using await here.
logger.info(f"Making prediction on inputs: {input_data.inputs}")
results = make_prediction(input_data=input_df.replace({np.nan: None}))
if results["errors"] is not None:
logger.warning(f"Prediction validation error: {results.get('errors')}")
raise HTTPException(status_code=400, detail=json.loads(results["errors"]))
logger.info(f"Prediction results: {results.get('predictions')}")
return results
| [
"async",
"def",
"predict",
"(",
"input_data",
":",
"schemas",
".",
"MultipleHouseDataInputs",
")",
"->",
"Any",
":",
"input_df",
"=",
"pd",
".",
"DataFrame",
"(",
"jsonable_encoder",
"(",
"input_data",
".",
"inputs",
")",
")",
"# Advanced: You can improve performance of your API by rewriting the",
"# `make prediction` function to be async and using await here.",
"logger",
".",
"info",
"(",
"f\"Making prediction on inputs: {input_data.inputs}\"",
")",
"results",
"=",
"make_prediction",
"(",
"input_data",
"=",
"input_df",
".",
"replace",
"(",
"{",
"np",
".",
"nan",
":",
"None",
"}",
")",
")",
"if",
"results",
"[",
"\"errors\"",
"]",
"is",
"not",
"None",
":",
"logger",
".",
"warning",
"(",
"f\"Prediction validation error: {results.get('errors')}\"",
")",
"raise",
"HTTPException",
"(",
"status_code",
"=",
"400",
",",
"detail",
"=",
"json",
".",
"loads",
"(",
"results",
"[",
"\"errors\"",
"]",
")",
")",
"logger",
".",
"info",
"(",
"f\"Prediction results: {results.get('predictions')}\"",
")",
"return",
"results"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-06-model-serving-api/house-prices-api/app/api.py#L31-L49
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-06-model-serving-api/house-prices-api/app/config.py
| python
| setup_app_logging
| (config: Settings)
| Prepare custom logging for our application.
| Prepare custom logging for our application.
| [
"Prepare",
"custom",
"logging",
"for",
"our",
"application",
"."
]
| def setup_app_logging(config: Settings) -> None:
"""Prepare custom logging for our application."""
LOGGERS = ("uvicorn.asgi", "uvicorn.access")
logging.getLogger().handlers = [InterceptHandler()]
for logger_name in LOGGERS:
logging_logger = logging.getLogger(logger_name)
logging_logger.handlers = [InterceptHandler(level=config.logging.LOGGING_LEVEL)]
logger.configure(
handlers=[{"sink": sys.stderr, "level": config.logging.LOGGING_LEVEL}]
)
| [
"def",
"setup_app_logging",
"(",
"config",
":",
"Settings",
")",
"->",
"None",
":",
"LOGGERS",
"=",
"(",
"\"uvicorn.asgi\"",
",",
"\"uvicorn.access\"",
")",
"logging",
".",
"getLogger",
"(",
")",
".",
"handlers",
"=",
"[",
"InterceptHandler",
"(",
")",
"]",
"for",
"logger_name",
"in",
"LOGGERS",
":",
"logging_logger",
"=",
"logging",
".",
"getLogger",
"(",
"logger_name",
")",
"logging_logger",
".",
"handlers",
"=",
"[",
"InterceptHandler",
"(",
"level",
"=",
"config",
".",
"logging",
".",
"LOGGING_LEVEL",
")",
"]",
"logger",
".",
"configure",
"(",
"handlers",
"=",
"[",
"{",
"\"sink\"",
":",
"sys",
".",
"stderr",
",",
"\"level\"",
":",
"config",
".",
"logging",
".",
"LOGGING_LEVEL",
"}",
"]",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-06-model-serving-api/house-prices-api/app/config.py#L56-L67
|
||
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-06-model-serving-api/house-prices-api/app/main.py
| python
| index
| (request: Request)
| return HTMLResponse(content=body)
| Basic HTML response.
| Basic HTML response.
| [
"Basic",
"HTML",
"response",
"."
]
| def index(request: Request) -> Any:
"""Basic HTML response."""
body = (
"<html>"
"<body style='padding: 10px;'>"
"<h1>Welcome to the API</h1>"
"<div>"
"Check the docs: <a href='/docs'>here</a>"
"</div>"
"</body>"
"</html>"
)
return HTMLResponse(content=body)
| [
"def",
"index",
"(",
"request",
":",
"Request",
")",
"->",
"Any",
":",
"body",
"=",
"(",
"\"<html>\"",
"\"<body style='padding: 10px;'>\"",
"\"<h1>Welcome to the API</h1>\"",
"\"<div>\"",
"\"Check the docs: <a href='/docs'>here</a>\"",
"\"</div>\"",
"\"</body>\"",
"\"</html>\"",
")",
"return",
"HTMLResponse",
"(",
"content",
"=",
"body",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-06-model-serving-api/house-prices-api/app/main.py#L23-L36
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/neural_network_model/neural_network_model/train_pipeline.py
| python
| run_training
| (save_result: bool = True)
| Train a Convolutional Neural Network.
| Train a Convolutional Neural Network.
| [
"Train",
"a",
"Convolutional",
"Neural",
"Network",
"."
]
| def run_training(save_result: bool = True):
"""Train a Convolutional Neural Network."""
images_df = dm.load_image_paths(config.DATA_FOLDER)
X_train, X_test, y_train, y_test = dm.get_train_test_target(images_df)
enc = pp.TargetEncoder()
enc.fit(y_train)
y_train = enc.transform(y_train)
pipe.pipe.fit(X_train, y_train)
if save_result:
joblib.dump(enc, config.ENCODER_PATH)
dm.save_pipeline_keras(pipe.pipe)
| [
"def",
"run_training",
"(",
"save_result",
":",
"bool",
"=",
"True",
")",
":",
"images_df",
"=",
"dm",
".",
"load_image_paths",
"(",
"config",
".",
"DATA_FOLDER",
")",
"X_train",
",",
"X_test",
",",
"y_train",
",",
"y_test",
"=",
"dm",
".",
"get_train_test_target",
"(",
"images_df",
")",
"enc",
"=",
"pp",
".",
"TargetEncoder",
"(",
")",
"enc",
".",
"fit",
"(",
"y_train",
")",
"y_train",
"=",
"enc",
".",
"transform",
"(",
"y_train",
")",
"pipe",
".",
"pipe",
".",
"fit",
"(",
"X_train",
",",
"y_train",
")",
"if",
"save_result",
":",
"joblib",
".",
"dump",
"(",
"enc",
",",
"config",
".",
"ENCODER_PATH",
")",
"dm",
".",
"save_pipeline_keras",
"(",
"pipe",
".",
"pipe",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/neural_network_model/neural_network_model/train_pipeline.py#L9-L23
|
||
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/neural_network_model/neural_network_model/predict.py
| python
| make_single_prediction
| (*, image_name: str, image_directory: str)
| return dict(predictions=predictions,
readable_predictions=readable_predictions,
version=_version)
| Make a single prediction using the saved model pipeline.
Args:
image_name: Filename of the image to classify
image_directory: Location of the image to classify
Returns
Dictionary with both raw predictions and readable values.
| Make a single prediction using the saved model pipeline.
| [
"Make",
"a",
"single",
"prediction",
"using",
"the",
"saved",
"model",
"pipeline",
"."
]
| def make_single_prediction(*, image_name: str, image_directory: str):
"""Make a single prediction using the saved model pipeline.
Args:
image_name: Filename of the image to classify
image_directory: Location of the image to classify
Returns
Dictionary with both raw predictions and readable values.
"""
image_df = dm.load_single_image(
data_folder=image_directory,
filename=image_name)
prepared_df = image_df['image'].reset_index(drop=True)
_logger.info(f'received input array: {prepared_df}, '
f'filename: {image_name}')
predictions = KERAS_PIPELINE.predict(prepared_df)
readable_predictions = ENCODER.encoder.inverse_transform(predictions)
_logger.info(f'Made prediction: {predictions}'
f' with model version: {_version}')
return dict(predictions=predictions,
readable_predictions=readable_predictions,
version=_version)
| [
"def",
"make_single_prediction",
"(",
"*",
",",
"image_name",
":",
"str",
",",
"image_directory",
":",
"str",
")",
":",
"image_df",
"=",
"dm",
".",
"load_single_image",
"(",
"data_folder",
"=",
"image_directory",
",",
"filename",
"=",
"image_name",
")",
"prepared_df",
"=",
"image_df",
"[",
"'image'",
"]",
".",
"reset_index",
"(",
"drop",
"=",
"True",
")",
"_logger",
".",
"info",
"(",
"f'received input array: {prepared_df}, '",
"f'filename: {image_name}'",
")",
"predictions",
"=",
"KERAS_PIPELINE",
".",
"predict",
"(",
"prepared_df",
")",
"readable_predictions",
"=",
"ENCODER",
".",
"encoder",
".",
"inverse_transform",
"(",
"predictions",
")",
"_logger",
".",
"info",
"(",
"f'Made prediction: {predictions}'",
"f' with model version: {_version}'",
")",
"return",
"dict",
"(",
"predictions",
"=",
"predictions",
",",
"readable_predictions",
"=",
"readable_predictions",
",",
"version",
"=",
"_version",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/neural_network_model/neural_network_model/predict.py#L13-L40
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/neural_network_model/neural_network_model/predict.py
| python
| make_bulk_prediction
| (*, images_df: pd.Series)
| return dict(predictions=predictions,
readable_predictions=readable_predictions,
version=_version)
| Make multiple predictions using the saved model pipeline.
Currently, this function is primarily for testing purposes,
allowing us to pass in a directory of images for running
bulk predictions.
Args:
images_df: Pandas series of images
Returns
Dictionary with both raw predictions and their classifications.
| Make multiple predictions using the saved model pipeline.
| [
"Make",
"multiple",
"predictions",
"using",
"the",
"saved",
"model",
"pipeline",
"."
]
| def make_bulk_prediction(*, images_df: pd.Series) -> dict:
"""Make multiple predictions using the saved model pipeline.
Currently, this function is primarily for testing purposes,
allowing us to pass in a directory of images for running
bulk predictions.
Args:
images_df: Pandas series of images
Returns
Dictionary with both raw predictions and their classifications.
"""
_logger.info(f'received input df: {images_df}')
predictions = KERAS_PIPELINE.predict(images_df)
readable_predictions = ENCODER.encoder.inverse_transform(predictions)
_logger.info(f'Made predictions: {predictions}'
f' with model version: {_version}')
return dict(predictions=predictions,
readable_predictions=readable_predictions,
version=_version)
| [
"def",
"make_bulk_prediction",
"(",
"*",
",",
"images_df",
":",
"pd",
".",
"Series",
")",
"->",
"dict",
":",
"_logger",
".",
"info",
"(",
"f'received input df: {images_df}'",
")",
"predictions",
"=",
"KERAS_PIPELINE",
".",
"predict",
"(",
"images_df",
")",
"readable_predictions",
"=",
"ENCODER",
".",
"encoder",
".",
"inverse_transform",
"(",
"predictions",
")",
"_logger",
".",
"info",
"(",
"f'Made predictions: {predictions}'",
"f' with model version: {_version}'",
")",
"return",
"dict",
"(",
"predictions",
"=",
"predictions",
",",
"readable_predictions",
"=",
"readable_predictions",
",",
"version",
"=",
"_version",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/neural_network_model/neural_network_model/predict.py#L43-L67
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/neural_network_model/neural_network_model/processing/data_management.py
| python
| load_single_image
| (data_folder: str, filename: str)
| return images_df
| Makes dataframe with image path and target.
| Makes dataframe with image path and target.
| [
"Makes",
"dataframe",
"with",
"image",
"path",
"and",
"target",
"."
]
| def load_single_image(data_folder: str, filename: str) -> pd.DataFrame:
"""Makes dataframe with image path and target."""
image_df = []
# search for specific image in directory
for image_path in glob(os.path.join(data_folder, f'{filename}')):
tmp = pd.DataFrame([image_path, 'unknown']).T
image_df.append(tmp)
# concatenate the final df
images_df = pd.concat(image_df, axis=0, ignore_index=True)
images_df.columns = ['image', 'target']
return images_df
| [
"def",
"load_single_image",
"(",
"data_folder",
":",
"str",
",",
"filename",
":",
"str",
")",
"->",
"pd",
".",
"DataFrame",
":",
"image_df",
"=",
"[",
"]",
"# search for specific image in directory",
"for",
"image_path",
"in",
"glob",
"(",
"os",
".",
"path",
".",
"join",
"(",
"data_folder",
",",
"f'{filename}'",
")",
")",
":",
"tmp",
"=",
"pd",
".",
"DataFrame",
"(",
"[",
"image_path",
",",
"'unknown'",
"]",
")",
".",
"T",
"image_df",
".",
"append",
"(",
"tmp",
")",
"# concatenate the final df",
"images_df",
"=",
"pd",
".",
"concat",
"(",
"image_df",
",",
"axis",
"=",
"0",
",",
"ignore_index",
"=",
"True",
")",
"images_df",
".",
"columns",
"=",
"[",
"'image'",
",",
"'target'",
"]",
"return",
"images_df"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/neural_network_model/neural_network_model/processing/data_management.py#L21-L35
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/neural_network_model/neural_network_model/processing/data_management.py
| python
| load_image_paths
| (data_folder: str)
| return images_df
| Makes dataframe with image path and target.
| Makes dataframe with image path and target.
| [
"Makes",
"dataframe",
"with",
"image",
"path",
"and",
"target",
"."
]
| def load_image_paths(data_folder: str) -> pd.DataFrame:
"""Makes dataframe with image path and target."""
images_df = []
# navigate within each folder
for class_folder_name in os.listdir(data_folder):
class_folder_path = os.path.join(data_folder, class_folder_name)
# collect every image path
for image_path in glob(os.path.join(class_folder_path, "*.png")):
tmp = pd.DataFrame([image_path, class_folder_name]).T
images_df.append(tmp)
# concatenate the final df
images_df = pd.concat(images_df, axis=0, ignore_index=True)
images_df.columns = ['image', 'target']
return images_df
| [
"def",
"load_image_paths",
"(",
"data_folder",
":",
"str",
")",
"->",
"pd",
".",
"DataFrame",
":",
"images_df",
"=",
"[",
"]",
"# navigate within each folder",
"for",
"class_folder_name",
"in",
"os",
".",
"listdir",
"(",
"data_folder",
")",
":",
"class_folder_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"data_folder",
",",
"class_folder_name",
")",
"# collect every image path",
"for",
"image_path",
"in",
"glob",
"(",
"os",
".",
"path",
".",
"join",
"(",
"class_folder_path",
",",
"\"*.png\"",
")",
")",
":",
"tmp",
"=",
"pd",
".",
"DataFrame",
"(",
"[",
"image_path",
",",
"class_folder_name",
"]",
")",
".",
"T",
"images_df",
".",
"append",
"(",
"tmp",
")",
"# concatenate the final df",
"images_df",
"=",
"pd",
".",
"concat",
"(",
"images_df",
",",
"axis",
"=",
"0",
",",
"ignore_index",
"=",
"True",
")",
"images_df",
".",
"columns",
"=",
"[",
"'image'",
",",
"'target'",
"]",
"return",
"images_df"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/neural_network_model/neural_network_model/processing/data_management.py#L38-L56
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/neural_network_model/neural_network_model/processing/data_management.py
| python
| get_train_test_target
| (df: pd.DataFrame)
| return X_train, X_test, y_train, y_test
| Split a dataset into train and test segments.
| Split a dataset into train and test segments.
| [
"Split",
"a",
"dataset",
"into",
"train",
"and",
"test",
"segments",
"."
]
| def get_train_test_target(df: pd.DataFrame):
"""Split a dataset into train and test segments."""
X_train, X_test, y_train, y_test = train_test_split(df['image'],
df['target'],
test_size=0.20,
random_state=101)
X_train.reset_index(drop=True, inplace=True)
X_test.reset_index(drop=True, inplace=True)
y_train.reset_index(drop=True, inplace=True)
y_test.reset_index(drop=True, inplace=True)
return X_train, X_test, y_train, y_test
| [
"def",
"get_train_test_target",
"(",
"df",
":",
"pd",
".",
"DataFrame",
")",
":",
"X_train",
",",
"X_test",
",",
"y_train",
",",
"y_test",
"=",
"train_test_split",
"(",
"df",
"[",
"'image'",
"]",
",",
"df",
"[",
"'target'",
"]",
",",
"test_size",
"=",
"0.20",
",",
"random_state",
"=",
"101",
")",
"X_train",
".",
"reset_index",
"(",
"drop",
"=",
"True",
",",
"inplace",
"=",
"True",
")",
"X_test",
".",
"reset_index",
"(",
"drop",
"=",
"True",
",",
"inplace",
"=",
"True",
")",
"y_train",
".",
"reset_index",
"(",
"drop",
"=",
"True",
",",
"inplace",
"=",
"True",
")",
"y_test",
".",
"reset_index",
"(",
"drop",
"=",
"True",
",",
"inplace",
"=",
"True",
")",
"return",
"X_train",
",",
"X_test",
",",
"y_train",
",",
"y_test"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/neural_network_model/neural_network_model/processing/data_management.py#L59-L73
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/neural_network_model/neural_network_model/processing/data_management.py
| python
| save_pipeline_keras
| (model)
| Persist keras model to disk.
| Persist keras model to disk.
| [
"Persist",
"keras",
"model",
"to",
"disk",
"."
]
| def save_pipeline_keras(model) -> None:
"""Persist keras model to disk."""
joblib.dump(model.named_steps['dataset'], config.PIPELINE_PATH)
joblib.dump(model.named_steps['cnn_model'].classes_, config.CLASSES_PATH)
model.named_steps['cnn_model'].model.save(str(config.MODEL_PATH))
remove_old_pipelines(
files_to_keep=[config.MODEL_FILE_NAME, config.ENCODER_FILE_NAME,
config.PIPELINE_FILE_NAME, config.CLASSES_FILE_NAME])
| [
"def",
"save_pipeline_keras",
"(",
"model",
")",
"->",
"None",
":",
"joblib",
".",
"dump",
"(",
"model",
".",
"named_steps",
"[",
"'dataset'",
"]",
",",
"config",
".",
"PIPELINE_PATH",
")",
"joblib",
".",
"dump",
"(",
"model",
".",
"named_steps",
"[",
"'cnn_model'",
"]",
".",
"classes_",
",",
"config",
".",
"CLASSES_PATH",
")",
"model",
".",
"named_steps",
"[",
"'cnn_model'",
"]",
".",
"model",
".",
"save",
"(",
"str",
"(",
"config",
".",
"MODEL_PATH",
")",
")",
"remove_old_pipelines",
"(",
"files_to_keep",
"=",
"[",
"config",
".",
"MODEL_FILE_NAME",
",",
"config",
".",
"ENCODER_FILE_NAME",
",",
"config",
".",
"PIPELINE_FILE_NAME",
",",
"config",
".",
"CLASSES_FILE_NAME",
"]",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/neural_network_model/neural_network_model/processing/data_management.py#L76-L85
|
||
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/neural_network_model/neural_network_model/processing/data_management.py
| python
| load_pipeline_keras
| ()
| return Pipeline([
('dataset', dataset),
('cnn_model', classifier)
])
| Load a Keras Pipeline from disk.
| Load a Keras Pipeline from disk.
| [
"Load",
"a",
"Keras",
"Pipeline",
"from",
"disk",
"."
]
| def load_pipeline_keras() -> Pipeline:
"""Load a Keras Pipeline from disk."""
dataset = joblib.load(config.PIPELINE_PATH)
build_model = lambda: load_model(config.MODEL_PATH)
classifier = KerasClassifier(build_fn=build_model,
batch_size=config.BATCH_SIZE,
validation_split=10,
epochs=config.EPOCHS,
verbose=2,
callbacks=m.callbacks_list,
# image_size = config.IMAGE_SIZE
)
classifier.classes_ = joblib.load(config.CLASSES_PATH)
classifier.model = build_model()
return Pipeline([
('dataset', dataset),
('cnn_model', classifier)
])
| [
"def",
"load_pipeline_keras",
"(",
")",
"->",
"Pipeline",
":",
"dataset",
"=",
"joblib",
".",
"load",
"(",
"config",
".",
"PIPELINE_PATH",
")",
"build_model",
"=",
"lambda",
":",
"load_model",
"(",
"config",
".",
"MODEL_PATH",
")",
"classifier",
"=",
"KerasClassifier",
"(",
"build_fn",
"=",
"build_model",
",",
"batch_size",
"=",
"config",
".",
"BATCH_SIZE",
",",
"validation_split",
"=",
"10",
",",
"epochs",
"=",
"config",
".",
"EPOCHS",
",",
"verbose",
"=",
"2",
",",
"callbacks",
"=",
"m",
".",
"callbacks_list",
",",
"# image_size = config.IMAGE_SIZE",
")",
"classifier",
".",
"classes_",
"=",
"joblib",
".",
"load",
"(",
"config",
".",
"CLASSES_PATH",
")",
"classifier",
".",
"model",
"=",
"build_model",
"(",
")",
"return",
"Pipeline",
"(",
"[",
"(",
"'dataset'",
",",
"dataset",
")",
",",
"(",
"'cnn_model'",
",",
"classifier",
")",
"]",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/neural_network_model/neural_network_model/processing/data_management.py#L88-L110
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/neural_network_model/neural_network_model/processing/data_management.py
| python
| remove_old_pipelines
| (*, files_to_keep: t.List[str])
| Remove old model pipelines, models, encoders and classes.
This is to ensure there is a simple one-to-one
mapping between the package version and the model
version to be imported and used by other applications.
| Remove old model pipelines, models, encoders and classes.
| [
"Remove",
"old",
"model",
"pipelines",
"models",
"encoders",
"and",
"classes",
"."
]
| def remove_old_pipelines(*, files_to_keep: t.List[str]) -> None:
"""
Remove old model pipelines, models, encoders and classes.
This is to ensure there is a simple one-to-one
mapping between the package version and the model
version to be imported and used by other applications.
"""
do_not_delete = files_to_keep + ['__init__.py']
for model_file in Path(config.TRAINED_MODEL_DIR).iterdir():
if model_file.name not in do_not_delete:
model_file.unlink()
| [
"def",
"remove_old_pipelines",
"(",
"*",
",",
"files_to_keep",
":",
"t",
".",
"List",
"[",
"str",
"]",
")",
"->",
"None",
":",
"do_not_delete",
"=",
"files_to_keep",
"+",
"[",
"'__init__.py'",
"]",
"for",
"model_file",
"in",
"Path",
"(",
"config",
".",
"TRAINED_MODEL_DIR",
")",
".",
"iterdir",
"(",
")",
":",
"if",
"model_file",
".",
"name",
"not",
"in",
"do_not_delete",
":",
"model_file",
".",
"unlink",
"(",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/neural_network_model/neural_network_model/processing/data_management.py#L119-L130
|
||
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/ml_api/api/validation.py
| python
| _filter_error_rows
| (errors: dict,
validated_input: t.List[dict]
)
| return validated_input
| Remove input data rows with errors.
| Remove input data rows with errors.
| [
"Remove",
"input",
"data",
"rows",
"with",
"errors",
"."
]
| def _filter_error_rows(errors: dict,
validated_input: t.List[dict]
) -> t.List[dict]:
"""Remove input data rows with errors."""
indexes = errors.keys()
# delete them in reverse order so that you
# don't throw off the subsequent indexes.
for index in sorted(indexes, reverse=True):
del validated_input[index]
return validated_input
| [
"def",
"_filter_error_rows",
"(",
"errors",
":",
"dict",
",",
"validated_input",
":",
"t",
".",
"List",
"[",
"dict",
"]",
")",
"->",
"t",
".",
"List",
"[",
"dict",
"]",
":",
"indexes",
"=",
"errors",
".",
"keys",
"(",
")",
"# delete them in reverse order so that you",
"# don't throw off the subsequent indexes.",
"for",
"index",
"in",
"sorted",
"(",
"indexes",
",",
"reverse",
"=",
"True",
")",
":",
"del",
"validated_input",
"[",
"index",
"]",
"return",
"validated_input"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/ml_api/api/validation.py#L103-L114
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/ml_api/api/validation.py
| python
| validate_inputs
| (input_data)
| return validated_input, errors
| Check prediction inputs against schema.
| Check prediction inputs against schema.
| [
"Check",
"prediction",
"inputs",
"against",
"schema",
"."
]
| def validate_inputs(input_data):
"""Check prediction inputs against schema."""
# set many=True to allow passing in a list
schema = HouseDataRequestSchema(strict=True, many=True)
# convert syntax error field names (beginning with numbers)
for dict in input_data:
for key, value in SYNTAX_ERROR_FIELD_MAP.items():
dict[value] = dict[key]
del dict[key]
errors = None
try:
schema.load(input_data)
except ValidationError as exc:
errors = exc.messages
# convert syntax error field names back
# this is a hack - never name your data
# fields with numbers as the first letter.
for dict in input_data:
for key, value in SYNTAX_ERROR_FIELD_MAP.items():
dict[key] = dict[value]
del dict[value]
if errors:
validated_input = _filter_error_rows(
errors=errors,
validated_input=input_data)
else:
validated_input = input_data
return validated_input, errors
| [
"def",
"validate_inputs",
"(",
"input_data",
")",
":",
"# set many=True to allow passing in a list",
"schema",
"=",
"HouseDataRequestSchema",
"(",
"strict",
"=",
"True",
",",
"many",
"=",
"True",
")",
"# convert syntax error field names (beginning with numbers)",
"for",
"dict",
"in",
"input_data",
":",
"for",
"key",
",",
"value",
"in",
"SYNTAX_ERROR_FIELD_MAP",
".",
"items",
"(",
")",
":",
"dict",
"[",
"value",
"]",
"=",
"dict",
"[",
"key",
"]",
"del",
"dict",
"[",
"key",
"]",
"errors",
"=",
"None",
"try",
":",
"schema",
".",
"load",
"(",
"input_data",
")",
"except",
"ValidationError",
"as",
"exc",
":",
"errors",
"=",
"exc",
".",
"messages",
"# convert syntax error field names back",
"# this is a hack - never name your data",
"# fields with numbers as the first letter.",
"for",
"dict",
"in",
"input_data",
":",
"for",
"key",
",",
"value",
"in",
"SYNTAX_ERROR_FIELD_MAP",
".",
"items",
"(",
")",
":",
"dict",
"[",
"key",
"]",
"=",
"dict",
"[",
"value",
"]",
"del",
"dict",
"[",
"value",
"]",
"if",
"errors",
":",
"validated_input",
"=",
"_filter_error_rows",
"(",
"errors",
"=",
"errors",
",",
"validated_input",
"=",
"input_data",
")",
"else",
":",
"validated_input",
"=",
"input_data",
"return",
"validated_input",
",",
"errors"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/ml_api/api/validation.py#L117-L150
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/ml_api/api/config.py
| python
| get_logger
| (*, logger_name)
| return logger
| Get logger with prepared handlers.
| Get logger with prepared handlers.
| [
"Get",
"logger",
"with",
"prepared",
"handlers",
"."
]
| def get_logger(*, logger_name):
"""Get logger with prepared handlers."""
logger = logging.getLogger(logger_name)
logger.setLevel(logging.INFO)
logger.addHandler(get_console_handler())
logger.addHandler(get_file_handler())
logger.propagate = False
return logger
| [
"def",
"get_logger",
"(",
"*",
",",
"logger_name",
")",
":",
"logger",
"=",
"logging",
".",
"getLogger",
"(",
"logger_name",
")",
"logger",
".",
"setLevel",
"(",
"logging",
".",
"INFO",
")",
"logger",
".",
"addHandler",
"(",
"get_console_handler",
"(",
")",
")",
"logger",
".",
"addHandler",
"(",
"get_file_handler",
"(",
")",
")",
"logger",
".",
"propagate",
"=",
"False",
"return",
"logger"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/ml_api/api/config.py#L35-L46
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/ml_api/api/app.py
| python
| create_app
| (*, config_object)
| return flask_app
| Create a flask app instance.
| Create a flask app instance.
| [
"Create",
"a",
"flask",
"app",
"instance",
"."
]
| def create_app(*, config_object) -> Flask:
"""Create a flask app instance."""
flask_app = Flask('ml_api')
flask_app.config.from_object(config_object)
# import blueprints
from api.controller import prediction_app
flask_app.register_blueprint(prediction_app)
_logger.debug('Application instance created')
return flask_app
| [
"def",
"create_app",
"(",
"*",
",",
"config_object",
")",
"->",
"Flask",
":",
"flask_app",
"=",
"Flask",
"(",
"'ml_api'",
")",
"flask_app",
".",
"config",
".",
"from_object",
"(",
"config_object",
")",
"# import blueprints",
"from",
"api",
".",
"controller",
"import",
"prediction_app",
"flask_app",
".",
"register_blueprint",
"(",
"prediction_app",
")",
"_logger",
".",
"debug",
"(",
"'Application instance created'",
")",
"return",
"flask_app"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/ml_api/api/app.py#L9-L20
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/regression_model/regression_model/train_pipeline.py
| python
| run_training
| ()
| Train the model.
| Train the model.
| [
"Train",
"the",
"model",
"."
]
| def run_training() -> None:
"""Train the model."""
# read training data
data = load_dataset(file_name=config.TRAINING_DATA_FILE)
# divide train and test
X_train, X_test, y_train, y_test = train_test_split(
data[config.FEATURES], data[config.TARGET], test_size=0.1, random_state=0
) # we are setting the seed here
# transform the target
y_train = np.log(y_train)
pipeline.price_pipe.fit(X_train[config.FEATURES], y_train)
_logger.info(f"saving model version: {_version}")
save_pipeline(pipeline_to_persist=pipeline.price_pipe)
| [
"def",
"run_training",
"(",
")",
"->",
"None",
":",
"# read training data",
"data",
"=",
"load_dataset",
"(",
"file_name",
"=",
"config",
".",
"TRAINING_DATA_FILE",
")",
"# divide train and test",
"X_train",
",",
"X_test",
",",
"y_train",
",",
"y_test",
"=",
"train_test_split",
"(",
"data",
"[",
"config",
".",
"FEATURES",
"]",
",",
"data",
"[",
"config",
".",
"TARGET",
"]",
",",
"test_size",
"=",
"0.1",
",",
"random_state",
"=",
"0",
")",
"# we are setting the seed here",
"# transform the target",
"y_train",
"=",
"np",
".",
"log",
"(",
"y_train",
")",
"pipeline",
".",
"price_pipe",
".",
"fit",
"(",
"X_train",
"[",
"config",
".",
"FEATURES",
"]",
",",
"y_train",
")",
"_logger",
".",
"info",
"(",
"f\"saving model version: {_version}\"",
")",
"save_pipeline",
"(",
"pipeline_to_persist",
"=",
"pipeline",
".",
"price_pipe",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/regression_model/regression_model/train_pipeline.py#L15-L32
|
||
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/regression_model/regression_model/predict.py
| python
| make_prediction
| (*, input_data: t.Union[pd.DataFrame, dict],
)
| return results
| Make a prediction using a saved model pipeline.
Args:
input_data: Array of model prediction inputs.
Returns:
Predictions for each input row, as well as the model version.
| Make a prediction using a saved model pipeline.
| [
"Make",
"a",
"prediction",
"using",
"a",
"saved",
"model",
"pipeline",
"."
]
| def make_prediction(*, input_data: t.Union[pd.DataFrame, dict],
) -> dict:
"""Make a prediction using a saved model pipeline.
Args:
input_data: Array of model prediction inputs.
Returns:
Predictions for each input row, as well as the model version.
"""
data = pd.DataFrame(input_data)
validated_data = validate_inputs(input_data=data)
prediction = _price_pipe.predict(validated_data[config.FEATURES])
output = np.exp(prediction)
results = {"predictions": output, "version": _version}
_logger.info(
f"Making predictions with model version: {_version} "
f"Inputs: {validated_data} "
f"Predictions: {results}"
)
return results
| [
"def",
"make_prediction",
"(",
"*",
",",
"input_data",
":",
"t",
".",
"Union",
"[",
"pd",
".",
"DataFrame",
",",
"dict",
"]",
",",
")",
"->",
"dict",
":",
"data",
"=",
"pd",
".",
"DataFrame",
"(",
"input_data",
")",
"validated_data",
"=",
"validate_inputs",
"(",
"input_data",
"=",
"data",
")",
"prediction",
"=",
"_price_pipe",
".",
"predict",
"(",
"validated_data",
"[",
"config",
".",
"FEATURES",
"]",
")",
"output",
"=",
"np",
".",
"exp",
"(",
"prediction",
")",
"results",
"=",
"{",
"\"predictions\"",
":",
"output",
",",
"\"version\"",
":",
"_version",
"}",
"_logger",
".",
"info",
"(",
"f\"Making predictions with model version: {_version} \"",
"f\"Inputs: {validated_data} \"",
"f\"Predictions: {results}\"",
")",
"return",
"results"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/regression_model/regression_model/predict.py#L19-L45
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/regression_model/regression_model/processing/validation.py
| python
| validate_inputs
| (input_data: pd.DataFrame)
| return validated_data
| Check model inputs for unprocessable values.
| Check model inputs for unprocessable values.
| [
"Check",
"model",
"inputs",
"for",
"unprocessable",
"values",
"."
]
| def validate_inputs(input_data: pd.DataFrame) -> pd.DataFrame:
"""Check model inputs for unprocessable values."""
validated_data = input_data.copy()
# check for numerical variables with NA not seen during training
if input_data[config.NUMERICAL_NA_NOT_ALLOWED].isnull().any().any():
validated_data = validated_data.dropna(
axis=0, subset=config.NUMERICAL_NA_NOT_ALLOWED
)
# check for categorical variables with NA not seen during training
if input_data[config.CATEGORICAL_NA_NOT_ALLOWED].isnull().any().any():
validated_data = validated_data.dropna(
axis=0, subset=config.CATEGORICAL_NA_NOT_ALLOWED
)
# check for values <= 0 for the log transformed variables
if (input_data[config.NUMERICALS_LOG_VARS] <= 0).any().any():
vars_with_neg_values = config.NUMERICALS_LOG_VARS[
(input_data[config.NUMERICALS_LOG_VARS] <= 0).any()
]
validated_data = validated_data[validated_data[vars_with_neg_values] > 0]
return validated_data
| [
"def",
"validate_inputs",
"(",
"input_data",
":",
"pd",
".",
"DataFrame",
")",
"->",
"pd",
".",
"DataFrame",
":",
"validated_data",
"=",
"input_data",
".",
"copy",
"(",
")",
"# check for numerical variables with NA not seen during training",
"if",
"input_data",
"[",
"config",
".",
"NUMERICAL_NA_NOT_ALLOWED",
"]",
".",
"isnull",
"(",
")",
".",
"any",
"(",
")",
".",
"any",
"(",
")",
":",
"validated_data",
"=",
"validated_data",
".",
"dropna",
"(",
"axis",
"=",
"0",
",",
"subset",
"=",
"config",
".",
"NUMERICAL_NA_NOT_ALLOWED",
")",
"# check for categorical variables with NA not seen during training",
"if",
"input_data",
"[",
"config",
".",
"CATEGORICAL_NA_NOT_ALLOWED",
"]",
".",
"isnull",
"(",
")",
".",
"any",
"(",
")",
".",
"any",
"(",
")",
":",
"validated_data",
"=",
"validated_data",
".",
"dropna",
"(",
"axis",
"=",
"0",
",",
"subset",
"=",
"config",
".",
"CATEGORICAL_NA_NOT_ALLOWED",
")",
"# check for values <= 0 for the log transformed variables",
"if",
"(",
"input_data",
"[",
"config",
".",
"NUMERICALS_LOG_VARS",
"]",
"<=",
"0",
")",
".",
"any",
"(",
")",
".",
"any",
"(",
")",
":",
"vars_with_neg_values",
"=",
"config",
".",
"NUMERICALS_LOG_VARS",
"[",
"(",
"input_data",
"[",
"config",
".",
"NUMERICALS_LOG_VARS",
"]",
"<=",
"0",
")",
".",
"any",
"(",
")",
"]",
"validated_data",
"=",
"validated_data",
"[",
"validated_data",
"[",
"vars_with_neg_values",
"]",
">",
"0",
"]",
"return",
"validated_data"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/regression_model/regression_model/processing/validation.py#L6-L30
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/regression_model/regression_model/processing/data_management.py
| python
| save_pipeline
| (*, pipeline_to_persist)
| Persist the pipeline.
Saves the versioned model, and overwrites any previous
saved models. This ensures that when the package is
published, there is only one trained model that can be
called, and we know exactly how it was built.
| Persist the pipeline.
Saves the versioned model, and overwrites any previous
saved models. This ensures that when the package is
published, there is only one trained model that can be
called, and we know exactly how it was built.
| [
"Persist",
"the",
"pipeline",
".",
"Saves",
"the",
"versioned",
"model",
"and",
"overwrites",
"any",
"previous",
"saved",
"models",
".",
"This",
"ensures",
"that",
"when",
"the",
"package",
"is",
"published",
"there",
"is",
"only",
"one",
"trained",
"model",
"that",
"can",
"be",
"called",
"and",
"we",
"know",
"exactly",
"how",
"it",
"was",
"built",
"."
]
| def save_pipeline(*, pipeline_to_persist) -> None:
"""Persist the pipeline.
Saves the versioned model, and overwrites any previous
saved models. This ensures that when the package is
published, there is only one trained model that can be
called, and we know exactly how it was built.
"""
# Prepare versioned save file name
save_file_name = f"{config.PIPELINE_SAVE_FILE}{_version}.pkl"
save_path = config.TRAINED_MODEL_DIR / save_file_name
remove_old_pipelines(files_to_keep=[save_file_name])
joblib.dump(pipeline_to_persist, save_path)
_logger.info(f"saved pipeline: {save_file_name}")
| [
"def",
"save_pipeline",
"(",
"*",
",",
"pipeline_to_persist",
")",
"->",
"None",
":",
"# Prepare versioned save file name",
"save_file_name",
"=",
"f\"{config.PIPELINE_SAVE_FILE}{_version}.pkl\"",
"save_path",
"=",
"config",
".",
"TRAINED_MODEL_DIR",
"/",
"save_file_name",
"remove_old_pipelines",
"(",
"files_to_keep",
"=",
"[",
"save_file_name",
"]",
")",
"joblib",
".",
"dump",
"(",
"pipeline_to_persist",
",",
"save_path",
")",
"_logger",
".",
"info",
"(",
"f\"saved pipeline: {save_file_name}\"",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/regression_model/regression_model/processing/data_management.py#L20-L34
|
||
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/regression_model/regression_model/processing/data_management.py
| python
| load_pipeline
| (*, file_name: str)
| return trained_model
| Load a persisted pipeline.
| Load a persisted pipeline.
| [
"Load",
"a",
"persisted",
"pipeline",
"."
]
| def load_pipeline(*, file_name: str) -> Pipeline:
"""Load a persisted pipeline."""
file_path = config.TRAINED_MODEL_DIR / file_name
trained_model = joblib.load(filename=file_path)
return trained_model
| [
"def",
"load_pipeline",
"(",
"*",
",",
"file_name",
":",
"str",
")",
"->",
"Pipeline",
":",
"file_path",
"=",
"config",
".",
"TRAINED_MODEL_DIR",
"/",
"file_name",
"trained_model",
"=",
"joblib",
".",
"load",
"(",
"filename",
"=",
"file_path",
")",
"return",
"trained_model"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/regression_model/regression_model/processing/data_management.py#L37-L42
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/regression_model/regression_model/processing/data_management.py
| python
| remove_old_pipelines
| (*, files_to_keep: t.List[str])
| Remove old model pipelines.
This is to ensure there is a simple one-to-one
mapping between the package version and the model
version to be imported and used by other applications.
However, we do also include the immediate previous
pipeline version for differential testing purposes.
| Remove old model pipelines.
| [
"Remove",
"old",
"model",
"pipelines",
"."
]
| def remove_old_pipelines(*, files_to_keep: t.List[str]) -> None:
"""
Remove old model pipelines.
This is to ensure there is a simple one-to-one
mapping between the package version and the model
version to be imported and used by other applications.
However, we do also include the immediate previous
pipeline version for differential testing purposes.
"""
do_not_delete = files_to_keep + ['__init__.py']
for model_file in config.TRAINED_MODEL_DIR.iterdir():
if model_file.name not in do_not_delete:
model_file.unlink()
| [
"def",
"remove_old_pipelines",
"(",
"*",
",",
"files_to_keep",
":",
"t",
".",
"List",
"[",
"str",
"]",
")",
"->",
"None",
":",
"do_not_delete",
"=",
"files_to_keep",
"+",
"[",
"'__init__.py'",
"]",
"for",
"model_file",
"in",
"config",
".",
"TRAINED_MODEL_DIR",
".",
"iterdir",
"(",
")",
":",
"if",
"model_file",
".",
"name",
"not",
"in",
"do_not_delete",
":",
"model_file",
".",
"unlink",
"(",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/regression_model/regression_model/processing/data_management.py#L45-L58
|
||
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/regression_model/regression_model/processing/preprocessors.py
| python
| CategoricalImputer.fit
| (self, X: pd.DataFrame, y: pd.Series = None)
| return self
| Fit statement to accomodate the sklearn pipeline.
| Fit statement to accomodate the sklearn pipeline.
| [
"Fit",
"statement",
"to",
"accomodate",
"the",
"sklearn",
"pipeline",
"."
]
| def fit(self, X: pd.DataFrame, y: pd.Series = None) -> "CategoricalImputer":
"""Fit statement to accomodate the sklearn pipeline."""
return self
| [
"def",
"fit",
"(",
"self",
",",
"X",
":",
"pd",
".",
"DataFrame",
",",
"y",
":",
"pd",
".",
"Series",
"=",
"None",
")",
"->",
"\"CategoricalImputer\"",
":",
"return",
"self"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/regression_model/regression_model/processing/preprocessors.py#L17-L20
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| packages/regression_model/regression_model/processing/preprocessors.py
| python
| CategoricalImputer.transform
| (self, X: pd.DataFrame)
| return X
| Apply the transforms to the dataframe.
| Apply the transforms to the dataframe.
| [
"Apply",
"the",
"transforms",
"to",
"the",
"dataframe",
"."
]
| def transform(self, X: pd.DataFrame) -> pd.DataFrame:
"""Apply the transforms to the dataframe."""
X = X.copy()
for feature in self.variables:
X[feature] = X[feature].fillna("Missing")
return X
| [
"def",
"transform",
"(",
"self",
",",
"X",
":",
"pd",
".",
"DataFrame",
")",
"->",
"pd",
".",
"DataFrame",
":",
"X",
"=",
"X",
".",
"copy",
"(",
")",
"for",
"feature",
"in",
"self",
".",
"variables",
":",
"X",
"[",
"feature",
"]",
"=",
"X",
"[",
"feature",
"]",
".",
"fillna",
"(",
"\"Missing\"",
")",
"return",
"X"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/packages/regression_model/regression_model/processing/preprocessors.py#L22-L29
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-05-production-model-package/regression_model/train_pipeline.py
| python
| run_training
| ()
| Train the model.
| Train the model.
| [
"Train",
"the",
"model",
"."
]
| def run_training() -> None:
"""Train the model."""
# read training data
data = load_dataset(file_name=config.app_config.training_data_file)
# divide train and test
X_train, X_test, y_train, y_test = train_test_split(
data[config.model_config.features], # predictors
data[config.model_config.target],
test_size=config.model_config.test_size,
# we are setting the random seed here
# for reproducibility
random_state=config.model_config.random_state,
)
y_train = np.log(y_train)
# fit model
price_pipe.fit(X_train, y_train)
# persist trained model
save_pipeline(pipeline_to_persist=price_pipe)
| [
"def",
"run_training",
"(",
")",
"->",
"None",
":",
"# read training data",
"data",
"=",
"load_dataset",
"(",
"file_name",
"=",
"config",
".",
"app_config",
".",
"training_data_file",
")",
"# divide train and test",
"X_train",
",",
"X_test",
",",
"y_train",
",",
"y_test",
"=",
"train_test_split",
"(",
"data",
"[",
"config",
".",
"model_config",
".",
"features",
"]",
",",
"# predictors",
"data",
"[",
"config",
".",
"model_config",
".",
"target",
"]",
",",
"test_size",
"=",
"config",
".",
"model_config",
".",
"test_size",
",",
"# we are setting the random seed here",
"# for reproducibility",
"random_state",
"=",
"config",
".",
"model_config",
".",
"random_state",
",",
")",
"y_train",
"=",
"np",
".",
"log",
"(",
"y_train",
")",
"# fit model",
"price_pipe",
".",
"fit",
"(",
"X_train",
",",
"y_train",
")",
"# persist trained model",
"save_pipeline",
"(",
"pipeline_to_persist",
"=",
"price_pipe",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-05-production-model-package/regression_model/train_pipeline.py#L8-L29
|
||
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-05-production-model-package/regression_model/predict.py
| python
| make_prediction
| (
*,
input_data: t.Union[pd.DataFrame, dict],
)
| return results
| Make a prediction using a saved model pipeline.
| Make a prediction using a saved model pipeline.
| [
"Make",
"a",
"prediction",
"using",
"a",
"saved",
"model",
"pipeline",
"."
]
| def make_prediction(
*,
input_data: t.Union[pd.DataFrame, dict],
) -> dict:
"""Make a prediction using a saved model pipeline."""
data = pd.DataFrame(input_data)
validated_data, errors = validate_inputs(input_data=data)
results = {"predictions": None, "version": _version, "errors": errors}
if not errors:
predictions = _price_pipe.predict(
X=validated_data[config.model_config.features]
)
results = {
"predictions": [np.exp(pred) for pred in predictions], # type: ignore
"version": _version,
"errors": errors,
}
return results
| [
"def",
"make_prediction",
"(",
"*",
",",
"input_data",
":",
"t",
".",
"Union",
"[",
"pd",
".",
"DataFrame",
",",
"dict",
"]",
",",
")",
"->",
"dict",
":",
"data",
"=",
"pd",
".",
"DataFrame",
"(",
"input_data",
")",
"validated_data",
",",
"errors",
"=",
"validate_inputs",
"(",
"input_data",
"=",
"data",
")",
"results",
"=",
"{",
"\"predictions\"",
":",
"None",
",",
"\"version\"",
":",
"_version",
",",
"\"errors\"",
":",
"errors",
"}",
"if",
"not",
"errors",
":",
"predictions",
"=",
"_price_pipe",
".",
"predict",
"(",
"X",
"=",
"validated_data",
"[",
"config",
".",
"model_config",
".",
"features",
"]",
")",
"results",
"=",
"{",
"\"predictions\"",
":",
"[",
"np",
".",
"exp",
"(",
"pred",
")",
"for",
"pred",
"in",
"predictions",
"]",
",",
"# type: ignore",
"\"version\"",
":",
"_version",
",",
"\"errors\"",
":",
"errors",
",",
"}",
"return",
"results"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-05-production-model-package/regression_model/predict.py#L15-L35
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-05-production-model-package/regression_model/processing/validation.py
| python
| drop_na_inputs
| (*, input_data: pd.DataFrame)
| return validated_data
| Check model inputs for na values and filter.
| Check model inputs for na values and filter.
| [
"Check",
"model",
"inputs",
"for",
"na",
"values",
"and",
"filter",
"."
]
| def drop_na_inputs(*, input_data: pd.DataFrame) -> pd.DataFrame:
"""Check model inputs for na values and filter."""
validated_data = input_data.copy()
new_vars_with_na = [
var
for var in config.model_config.features
if var
not in config.model_config.categorical_vars_with_na_frequent
+ config.model_config.categorical_vars_with_na_missing
+ config.model_config.numerical_vars_with_na
and validated_data[var].isnull().sum() > 0
]
validated_data.dropna(subset=new_vars_with_na, inplace=True)
return validated_data
| [
"def",
"drop_na_inputs",
"(",
"*",
",",
"input_data",
":",
"pd",
".",
"DataFrame",
")",
"->",
"pd",
".",
"DataFrame",
":",
"validated_data",
"=",
"input_data",
".",
"copy",
"(",
")",
"new_vars_with_na",
"=",
"[",
"var",
"for",
"var",
"in",
"config",
".",
"model_config",
".",
"features",
"if",
"var",
"not",
"in",
"config",
".",
"model_config",
".",
"categorical_vars_with_na_frequent",
"+",
"config",
".",
"model_config",
".",
"categorical_vars_with_na_missing",
"+",
"config",
".",
"model_config",
".",
"numerical_vars_with_na",
"and",
"validated_data",
"[",
"var",
"]",
".",
"isnull",
"(",
")",
".",
"sum",
"(",
")",
">",
"0",
"]",
"validated_data",
".",
"dropna",
"(",
"subset",
"=",
"new_vars_with_na",
",",
"inplace",
"=",
"True",
")",
"return",
"validated_data"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-05-production-model-package/regression_model/processing/validation.py#L10-L24
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-05-production-model-package/regression_model/processing/validation.py
| python
| validate_inputs
| (*, input_data: pd.DataFrame)
| return validated_data, errors
| Check model inputs for unprocessable values.
| Check model inputs for unprocessable values.
| [
"Check",
"model",
"inputs",
"for",
"unprocessable",
"values",
"."
]
| def validate_inputs(*, input_data: pd.DataFrame) -> Tuple[pd.DataFrame, Optional[dict]]:
"""Check model inputs for unprocessable values."""
# convert syntax error field names (beginning with numbers)
input_data.rename(columns=config.model_config.variables_to_rename, inplace=True)
input_data["MSSubClass"] = input_data["MSSubClass"].astype("O")
relevant_data = input_data[config.model_config.features].copy()
validated_data = drop_na_inputs(input_data=relevant_data)
errors = None
try:
# replace numpy nans so that pydantic can validate
MultipleHouseDataInputs(
inputs=validated_data.replace({np.nan: None}).to_dict(orient="records")
)
except ValidationError as error:
errors = error.json()
return validated_data, errors
| [
"def",
"validate_inputs",
"(",
"*",
",",
"input_data",
":",
"pd",
".",
"DataFrame",
")",
"->",
"Tuple",
"[",
"pd",
".",
"DataFrame",
",",
"Optional",
"[",
"dict",
"]",
"]",
":",
"# convert syntax error field names (beginning with numbers)",
"input_data",
".",
"rename",
"(",
"columns",
"=",
"config",
".",
"model_config",
".",
"variables_to_rename",
",",
"inplace",
"=",
"True",
")",
"input_data",
"[",
"\"MSSubClass\"",
"]",
"=",
"input_data",
"[",
"\"MSSubClass\"",
"]",
".",
"astype",
"(",
"\"O\"",
")",
"relevant_data",
"=",
"input_data",
"[",
"config",
".",
"model_config",
".",
"features",
"]",
".",
"copy",
"(",
")",
"validated_data",
"=",
"drop_na_inputs",
"(",
"input_data",
"=",
"relevant_data",
")",
"errors",
"=",
"None",
"try",
":",
"# replace numpy nans so that pydantic can validate",
"MultipleHouseDataInputs",
"(",
"inputs",
"=",
"validated_data",
".",
"replace",
"(",
"{",
"np",
".",
"nan",
":",
"None",
"}",
")",
".",
"to_dict",
"(",
"orient",
"=",
"\"records\"",
")",
")",
"except",
"ValidationError",
"as",
"error",
":",
"errors",
"=",
"error",
".",
"json",
"(",
")",
"return",
"validated_data",
",",
"errors"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-05-production-model-package/regression_model/processing/validation.py#L27-L45
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-05-production-model-package/regression_model/processing/data_manager.py
| python
| save_pipeline
| (*, pipeline_to_persist: Pipeline)
| Persist the pipeline.
Saves the versioned model, and overwrites any previous
saved models. This ensures that when the package is
published, there is only one trained model that can be
called, and we know exactly how it was built.
| Persist the pipeline.
Saves the versioned model, and overwrites any previous
saved models. This ensures that when the package is
published, there is only one trained model that can be
called, and we know exactly how it was built.
| [
"Persist",
"the",
"pipeline",
".",
"Saves",
"the",
"versioned",
"model",
"and",
"overwrites",
"any",
"previous",
"saved",
"models",
".",
"This",
"ensures",
"that",
"when",
"the",
"package",
"is",
"published",
"there",
"is",
"only",
"one",
"trained",
"model",
"that",
"can",
"be",
"called",
"and",
"we",
"know",
"exactly",
"how",
"it",
"was",
"built",
"."
]
| def save_pipeline(*, pipeline_to_persist: Pipeline) -> None:
"""Persist the pipeline.
Saves the versioned model, and overwrites any previous
saved models. This ensures that when the package is
published, there is only one trained model that can be
called, and we know exactly how it was built.
"""
# Prepare versioned save file name
save_file_name = f"{config.app_config.pipeline_save_file}{_version}.pkl"
save_path = TRAINED_MODEL_DIR / save_file_name
remove_old_pipelines(files_to_keep=[save_file_name])
joblib.dump(pipeline_to_persist, save_path)
| [
"def",
"save_pipeline",
"(",
"*",
",",
"pipeline_to_persist",
":",
"Pipeline",
")",
"->",
"None",
":",
"# Prepare versioned save file name",
"save_file_name",
"=",
"f\"{config.app_config.pipeline_save_file}{_version}.pkl\"",
"save_path",
"=",
"TRAINED_MODEL_DIR",
"/",
"save_file_name",
"remove_old_pipelines",
"(",
"files_to_keep",
"=",
"[",
"save_file_name",
"]",
")",
"joblib",
".",
"dump",
"(",
"pipeline_to_persist",
",",
"save_path",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-05-production-model-package/regression_model/processing/data_manager.py#L21-L34
|
||
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-05-production-model-package/regression_model/processing/data_manager.py
| python
| load_pipeline
| (*, file_name: str)
| return trained_model
| Load a persisted pipeline.
| Load a persisted pipeline.
| [
"Load",
"a",
"persisted",
"pipeline",
"."
]
| def load_pipeline(*, file_name: str) -> Pipeline:
"""Load a persisted pipeline."""
file_path = TRAINED_MODEL_DIR / file_name
trained_model = joblib.load(filename=file_path)
return trained_model
| [
"def",
"load_pipeline",
"(",
"*",
",",
"file_name",
":",
"str",
")",
"->",
"Pipeline",
":",
"file_path",
"=",
"TRAINED_MODEL_DIR",
"/",
"file_name",
"trained_model",
"=",
"joblib",
".",
"load",
"(",
"filename",
"=",
"file_path",
")",
"return",
"trained_model"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-05-production-model-package/regression_model/processing/data_manager.py#L37-L42
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-05-production-model-package/regression_model/processing/data_manager.py
| python
| remove_old_pipelines
| (*, files_to_keep: t.List[str])
| Remove old model pipelines.
This is to ensure there is a simple one-to-one
mapping between the package version and the model
version to be imported and used by other applications.
| Remove old model pipelines.
This is to ensure there is a simple one-to-one
mapping between the package version and the model
version to be imported and used by other applications.
| [
"Remove",
"old",
"model",
"pipelines",
".",
"This",
"is",
"to",
"ensure",
"there",
"is",
"a",
"simple",
"one",
"-",
"to",
"-",
"one",
"mapping",
"between",
"the",
"package",
"version",
"and",
"the",
"model",
"version",
"to",
"be",
"imported",
"and",
"used",
"by",
"other",
"applications",
"."
]
| def remove_old_pipelines(*, files_to_keep: t.List[str]) -> None:
"""
Remove old model pipelines.
This is to ensure there is a simple one-to-one
mapping between the package version and the model
version to be imported and used by other applications.
"""
do_not_delete = files_to_keep + ["__init__.py"]
for model_file in TRAINED_MODEL_DIR.iterdir():
if model_file.name not in do_not_delete:
model_file.unlink()
| [
"def",
"remove_old_pipelines",
"(",
"*",
",",
"files_to_keep",
":",
"t",
".",
"List",
"[",
"str",
"]",
")",
"->",
"None",
":",
"do_not_delete",
"=",
"files_to_keep",
"+",
"[",
"\"__init__.py\"",
"]",
"for",
"model_file",
"in",
"TRAINED_MODEL_DIR",
".",
"iterdir",
"(",
")",
":",
"if",
"model_file",
".",
"name",
"not",
"in",
"do_not_delete",
":",
"model_file",
".",
"unlink",
"(",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-05-production-model-package/regression_model/processing/data_manager.py#L45-L55
|
||
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-05-production-model-package/regression_model/config/core.py
| python
| find_config_file
| ()
| Locate the configuration file.
| Locate the configuration file.
| [
"Locate",
"the",
"configuration",
"file",
"."
]
| def find_config_file() -> Path:
"""Locate the configuration file."""
if CONFIG_FILE_PATH.is_file():
return CONFIG_FILE_PATH
raise Exception(f"Config not found at {CONFIG_FILE_PATH!r}")
| [
"def",
"find_config_file",
"(",
")",
"->",
"Path",
":",
"if",
"CONFIG_FILE_PATH",
".",
"is_file",
"(",
")",
":",
"return",
"CONFIG_FILE_PATH",
"raise",
"Exception",
"(",
"f\"Config not found at {CONFIG_FILE_PATH!r}\"",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-05-production-model-package/regression_model/config/core.py#L65-L69
|
||
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-05-production-model-package/regression_model/config/core.py
| python
| fetch_config_from_yaml
| (cfg_path: Path = None)
| Parse YAML containing the package configuration.
| Parse YAML containing the package configuration.
| [
"Parse",
"YAML",
"containing",
"the",
"package",
"configuration",
"."
]
| def fetch_config_from_yaml(cfg_path: Path = None) -> YAML:
"""Parse YAML containing the package configuration."""
if not cfg_path:
cfg_path = find_config_file()
if cfg_path:
with open(cfg_path, "r") as conf_file:
parsed_config = load(conf_file.read())
return parsed_config
raise OSError(f"Did not find config file at path: {cfg_path}")
| [
"def",
"fetch_config_from_yaml",
"(",
"cfg_path",
":",
"Path",
"=",
"None",
")",
"->",
"YAML",
":",
"if",
"not",
"cfg_path",
":",
"cfg_path",
"=",
"find_config_file",
"(",
")",
"if",
"cfg_path",
":",
"with",
"open",
"(",
"cfg_path",
",",
"\"r\"",
")",
"as",
"conf_file",
":",
"parsed_config",
"=",
"load",
"(",
"conf_file",
".",
"read",
"(",
")",
")",
"return",
"parsed_config",
"raise",
"OSError",
"(",
"f\"Did not find config file at path: {cfg_path}\"",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-05-production-model-package/regression_model/config/core.py#L72-L82
|
||
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-05-production-model-package/regression_model/config/core.py
| python
| create_and_validate_config
| (parsed_config: YAML = None)
| return _config
| Run validation on config values.
| Run validation on config values.
| [
"Run",
"validation",
"on",
"config",
"values",
"."
]
| def create_and_validate_config(parsed_config: YAML = None) -> Config:
"""Run validation on config values."""
if parsed_config is None:
parsed_config = fetch_config_from_yaml()
# specify the data attribute from the strictyaml YAML type.
_config = Config(
app_config=AppConfig(**parsed_config.data),
model_config=ModelConfig(**parsed_config.data),
)
return _config
| [
"def",
"create_and_validate_config",
"(",
"parsed_config",
":",
"YAML",
"=",
"None",
")",
"->",
"Config",
":",
"if",
"parsed_config",
"is",
"None",
":",
"parsed_config",
"=",
"fetch_config_from_yaml",
"(",
")",
"# specify the data attribute from the strictyaml YAML type.",
"_config",
"=",
"Config",
"(",
"app_config",
"=",
"AppConfig",
"(",
"*",
"*",
"parsed_config",
".",
"data",
")",
",",
"model_config",
"=",
"ModelConfig",
"(",
"*",
"*",
"parsed_config",
".",
"data",
")",
",",
")",
"return",
"_config"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-05-production-model-package/regression_model/config/core.py#L85-L96
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-07-ci-and-publishing/model-package/regression_model/train_pipeline.py
| python
| run_training
| ()
| Train the model.
| Train the model.
| [
"Train",
"the",
"model",
"."
]
| def run_training() -> None:
"""Train the model."""
# read training data
data = load_dataset(file_name=config.app_config.training_data_file)
# divide train and test
X_train, X_test, y_train, y_test = train_test_split(
data[config.model_config.features], # predictors
data[config.model_config.target],
test_size=config.model_config.test_size,
# we are setting the random seed here
# for reproducibility
random_state=config.model_config.random_state,
)
y_train = np.log(y_train)
# fit model
price_pipe.fit(X_train, y_train)
# persist trained model
save_pipeline(pipeline_to_persist=price_pipe)
| [
"def",
"run_training",
"(",
")",
"->",
"None",
":",
"# read training data",
"data",
"=",
"load_dataset",
"(",
"file_name",
"=",
"config",
".",
"app_config",
".",
"training_data_file",
")",
"# divide train and test",
"X_train",
",",
"X_test",
",",
"y_train",
",",
"y_test",
"=",
"train_test_split",
"(",
"data",
"[",
"config",
".",
"model_config",
".",
"features",
"]",
",",
"# predictors",
"data",
"[",
"config",
".",
"model_config",
".",
"target",
"]",
",",
"test_size",
"=",
"config",
".",
"model_config",
".",
"test_size",
",",
"# we are setting the random seed here",
"# for reproducibility",
"random_state",
"=",
"config",
".",
"model_config",
".",
"random_state",
",",
")",
"y_train",
"=",
"np",
".",
"log",
"(",
"y_train",
")",
"# fit model",
"price_pipe",
".",
"fit",
"(",
"X_train",
",",
"y_train",
")",
"# persist trained model",
"save_pipeline",
"(",
"pipeline_to_persist",
"=",
"price_pipe",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-07-ci-and-publishing/model-package/regression_model/train_pipeline.py#L8-L29
|
||
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-07-ci-and-publishing/model-package/regression_model/predict.py
| python
| make_prediction
| (
*,
input_data: t.Union[pd.DataFrame, dict],
)
| return results
| Make a prediction using a saved model pipeline.
| Make a prediction using a saved model pipeline.
| [
"Make",
"a",
"prediction",
"using",
"a",
"saved",
"model",
"pipeline",
"."
]
| def make_prediction(
*,
input_data: t.Union[pd.DataFrame, dict],
) -> dict:
"""Make a prediction using a saved model pipeline."""
data = pd.DataFrame(input_data)
validated_data, errors = validate_inputs(input_data=data)
results = {"predictions": None, "version": _version, "errors": errors}
if not errors:
predictions = _price_pipe.predict(
X=validated_data[config.model_config.features]
)
results = {
"predictions": [np.exp(pred) for pred in predictions], # type: ignore
"version": _version,
"errors": errors,
}
return results
| [
"def",
"make_prediction",
"(",
"*",
",",
"input_data",
":",
"t",
".",
"Union",
"[",
"pd",
".",
"DataFrame",
",",
"dict",
"]",
",",
")",
"->",
"dict",
":",
"data",
"=",
"pd",
".",
"DataFrame",
"(",
"input_data",
")",
"validated_data",
",",
"errors",
"=",
"validate_inputs",
"(",
"input_data",
"=",
"data",
")",
"results",
"=",
"{",
"\"predictions\"",
":",
"None",
",",
"\"version\"",
":",
"_version",
",",
"\"errors\"",
":",
"errors",
"}",
"if",
"not",
"errors",
":",
"predictions",
"=",
"_price_pipe",
".",
"predict",
"(",
"X",
"=",
"validated_data",
"[",
"config",
".",
"model_config",
".",
"features",
"]",
")",
"results",
"=",
"{",
"\"predictions\"",
":",
"[",
"np",
".",
"exp",
"(",
"pred",
")",
"for",
"pred",
"in",
"predictions",
"]",
",",
"# type: ignore",
"\"version\"",
":",
"_version",
",",
"\"errors\"",
":",
"errors",
",",
"}",
"return",
"results"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-07-ci-and-publishing/model-package/regression_model/predict.py#L15-L35
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-07-ci-and-publishing/model-package/regression_model/processing/validation.py
| python
| drop_na_inputs
| (*, input_data: pd.DataFrame)
| return validated_data
| Check model inputs for na values and filter.
| Check model inputs for na values and filter.
| [
"Check",
"model",
"inputs",
"for",
"na",
"values",
"and",
"filter",
"."
]
| def drop_na_inputs(*, input_data: pd.DataFrame) -> pd.DataFrame:
"""Check model inputs for na values and filter."""
validated_data = input_data.copy()
new_vars_with_na = [
var
for var in config.model_config.features
if var
not in config.model_config.categorical_vars_with_na_frequent
+ config.model_config.categorical_vars_with_na_missing
+ config.model_config.numerical_vars_with_na
and validated_data[var].isnull().sum() > 0
]
validated_data.dropna(subset=new_vars_with_na, inplace=True)
return validated_data
| [
"def",
"drop_na_inputs",
"(",
"*",
",",
"input_data",
":",
"pd",
".",
"DataFrame",
")",
"->",
"pd",
".",
"DataFrame",
":",
"validated_data",
"=",
"input_data",
".",
"copy",
"(",
")",
"new_vars_with_na",
"=",
"[",
"var",
"for",
"var",
"in",
"config",
".",
"model_config",
".",
"features",
"if",
"var",
"not",
"in",
"config",
".",
"model_config",
".",
"categorical_vars_with_na_frequent",
"+",
"config",
".",
"model_config",
".",
"categorical_vars_with_na_missing",
"+",
"config",
".",
"model_config",
".",
"numerical_vars_with_na",
"and",
"validated_data",
"[",
"var",
"]",
".",
"isnull",
"(",
")",
".",
"sum",
"(",
")",
">",
"0",
"]",
"validated_data",
".",
"dropna",
"(",
"subset",
"=",
"new_vars_with_na",
",",
"inplace",
"=",
"True",
")",
"return",
"validated_data"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-07-ci-and-publishing/model-package/regression_model/processing/validation.py#L10-L24
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-07-ci-and-publishing/model-package/regression_model/processing/validation.py
| python
| validate_inputs
| (*, input_data: pd.DataFrame)
| return validated_data, errors
| Check model inputs for unprocessable values.
| Check model inputs for unprocessable values.
| [
"Check",
"model",
"inputs",
"for",
"unprocessable",
"values",
"."
]
| def validate_inputs(*, input_data: pd.DataFrame) -> Tuple[pd.DataFrame, Optional[dict]]:
"""Check model inputs for unprocessable values."""
# convert syntax error field names (beginning with numbers)
input_data.rename(columns=config.model_config.variables_to_rename, inplace=True)
input_data["MSSubClass"] = input_data["MSSubClass"].astype("O")
relevant_data = input_data[config.model_config.features].copy()
validated_data = drop_na_inputs(input_data=relevant_data)
errors = None
try:
# replace numpy nans so that pydantic can validate
MultipleHouseDataInputs(
inputs=validated_data.replace({np.nan: None}).to_dict(orient="records")
)
except ValidationError as error:
errors = error.json()
return validated_data, errors
| [
"def",
"validate_inputs",
"(",
"*",
",",
"input_data",
":",
"pd",
".",
"DataFrame",
")",
"->",
"Tuple",
"[",
"pd",
".",
"DataFrame",
",",
"Optional",
"[",
"dict",
"]",
"]",
":",
"# convert syntax error field names (beginning with numbers)",
"input_data",
".",
"rename",
"(",
"columns",
"=",
"config",
".",
"model_config",
".",
"variables_to_rename",
",",
"inplace",
"=",
"True",
")",
"input_data",
"[",
"\"MSSubClass\"",
"]",
"=",
"input_data",
"[",
"\"MSSubClass\"",
"]",
".",
"astype",
"(",
"\"O\"",
")",
"relevant_data",
"=",
"input_data",
"[",
"config",
".",
"model_config",
".",
"features",
"]",
".",
"copy",
"(",
")",
"validated_data",
"=",
"drop_na_inputs",
"(",
"input_data",
"=",
"relevant_data",
")",
"errors",
"=",
"None",
"try",
":",
"# replace numpy nans so that pydantic can validate",
"MultipleHouseDataInputs",
"(",
"inputs",
"=",
"validated_data",
".",
"replace",
"(",
"{",
"np",
".",
"nan",
":",
"None",
"}",
")",
".",
"to_dict",
"(",
"orient",
"=",
"\"records\"",
")",
")",
"except",
"ValidationError",
"as",
"error",
":",
"errors",
"=",
"error",
".",
"json",
"(",
")",
"return",
"validated_data",
",",
"errors"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-07-ci-and-publishing/model-package/regression_model/processing/validation.py#L27-L45
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-07-ci-and-publishing/model-package/regression_model/processing/data_manager.py
| python
| save_pipeline
| (*, pipeline_to_persist: Pipeline)
| Persist the pipeline.
Saves the versioned model, and overwrites any previous
saved models. This ensures that when the package is
published, there is only one trained model that can be
called, and we know exactly how it was built.
| Persist the pipeline.
Saves the versioned model, and overwrites any previous
saved models. This ensures that when the package is
published, there is only one trained model that can be
called, and we know exactly how it was built.
| [
"Persist",
"the",
"pipeline",
".",
"Saves",
"the",
"versioned",
"model",
"and",
"overwrites",
"any",
"previous",
"saved",
"models",
".",
"This",
"ensures",
"that",
"when",
"the",
"package",
"is",
"published",
"there",
"is",
"only",
"one",
"trained",
"model",
"that",
"can",
"be",
"called",
"and",
"we",
"know",
"exactly",
"how",
"it",
"was",
"built",
"."
]
| def save_pipeline(*, pipeline_to_persist: Pipeline) -> None:
"""Persist the pipeline.
Saves the versioned model, and overwrites any previous
saved models. This ensures that when the package is
published, there is only one trained model that can be
called, and we know exactly how it was built.
"""
# Prepare versioned save file name
save_file_name = f"{config.app_config.pipeline_save_file}{_version}.pkl"
save_path = TRAINED_MODEL_DIR / save_file_name
remove_old_pipelines(files_to_keep=[save_file_name])
joblib.dump(pipeline_to_persist, save_path)
| [
"def",
"save_pipeline",
"(",
"*",
",",
"pipeline_to_persist",
":",
"Pipeline",
")",
"->",
"None",
":",
"# Prepare versioned save file name",
"save_file_name",
"=",
"f\"{config.app_config.pipeline_save_file}{_version}.pkl\"",
"save_path",
"=",
"TRAINED_MODEL_DIR",
"/",
"save_file_name",
"remove_old_pipelines",
"(",
"files_to_keep",
"=",
"[",
"save_file_name",
"]",
")",
"joblib",
".",
"dump",
"(",
"pipeline_to_persist",
",",
"save_path",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-07-ci-and-publishing/model-package/regression_model/processing/data_manager.py#L21-L34
|
||
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-07-ci-and-publishing/model-package/regression_model/processing/data_manager.py
| python
| load_pipeline
| (*, file_name: str)
| return trained_model
| Load a persisted pipeline.
| Load a persisted pipeline.
| [
"Load",
"a",
"persisted",
"pipeline",
"."
]
| def load_pipeline(*, file_name: str) -> Pipeline:
"""Load a persisted pipeline."""
file_path = TRAINED_MODEL_DIR / file_name
trained_model = joblib.load(filename=file_path)
return trained_model
| [
"def",
"load_pipeline",
"(",
"*",
",",
"file_name",
":",
"str",
")",
"->",
"Pipeline",
":",
"file_path",
"=",
"TRAINED_MODEL_DIR",
"/",
"file_name",
"trained_model",
"=",
"joblib",
".",
"load",
"(",
"filename",
"=",
"file_path",
")",
"return",
"trained_model"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-07-ci-and-publishing/model-package/regression_model/processing/data_manager.py#L37-L42
|
|
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-07-ci-and-publishing/model-package/regression_model/processing/data_manager.py
| python
| remove_old_pipelines
| (*, files_to_keep: t.List[str])
| Remove old model pipelines.
This is to ensure there is a simple one-to-one
mapping between the package version and the model
version to be imported and used by other applications.
| Remove old model pipelines.
This is to ensure there is a simple one-to-one
mapping between the package version and the model
version to be imported and used by other applications.
| [
"Remove",
"old",
"model",
"pipelines",
".",
"This",
"is",
"to",
"ensure",
"there",
"is",
"a",
"simple",
"one",
"-",
"to",
"-",
"one",
"mapping",
"between",
"the",
"package",
"version",
"and",
"the",
"model",
"version",
"to",
"be",
"imported",
"and",
"used",
"by",
"other",
"applications",
"."
]
| def remove_old_pipelines(*, files_to_keep: t.List[str]) -> None:
"""
Remove old model pipelines.
This is to ensure there is a simple one-to-one
mapping between the package version and the model
version to be imported and used by other applications.
"""
do_not_delete = files_to_keep + ["__init__.py"]
for model_file in TRAINED_MODEL_DIR.iterdir():
if model_file.name not in do_not_delete:
model_file.unlink()
| [
"def",
"remove_old_pipelines",
"(",
"*",
",",
"files_to_keep",
":",
"t",
".",
"List",
"[",
"str",
"]",
")",
"->",
"None",
":",
"do_not_delete",
"=",
"files_to_keep",
"+",
"[",
"\"__init__.py\"",
"]",
"for",
"model_file",
"in",
"TRAINED_MODEL_DIR",
".",
"iterdir",
"(",
")",
":",
"if",
"model_file",
".",
"name",
"not",
"in",
"do_not_delete",
":",
"model_file",
".",
"unlink",
"(",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-07-ci-and-publishing/model-package/regression_model/processing/data_manager.py#L45-L55
|
||
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-07-ci-and-publishing/model-package/regression_model/config/core.py
| python
| find_config_file
| ()
| Locate the configuration file.
| Locate the configuration file.
| [
"Locate",
"the",
"configuration",
"file",
"."
]
| def find_config_file() -> Path:
"""Locate the configuration file."""
if CONFIG_FILE_PATH.is_file():
return CONFIG_FILE_PATH
raise Exception(f"Config not found at {CONFIG_FILE_PATH!r}")
| [
"def",
"find_config_file",
"(",
")",
"->",
"Path",
":",
"if",
"CONFIG_FILE_PATH",
".",
"is_file",
"(",
")",
":",
"return",
"CONFIG_FILE_PATH",
"raise",
"Exception",
"(",
"f\"Config not found at {CONFIG_FILE_PATH!r}\"",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-07-ci-and-publishing/model-package/regression_model/config/core.py#L65-L69
|
||
trainindata/deploying-machine-learning-models
| aaeb3e65d0a58ad583289aaa39b089f11d06a4eb
| section-07-ci-and-publishing/model-package/regression_model/config/core.py
| python
| fetch_config_from_yaml
| (cfg_path: Path = None)
| Parse YAML containing the package configuration.
| Parse YAML containing the package configuration.
| [
"Parse",
"YAML",
"containing",
"the",
"package",
"configuration",
"."
]
| def fetch_config_from_yaml(cfg_path: Path = None) -> YAML:
"""Parse YAML containing the package configuration."""
if not cfg_path:
cfg_path = find_config_file()
if cfg_path:
with open(cfg_path, "r") as conf_file:
parsed_config = load(conf_file.read())
return parsed_config
raise OSError(f"Did not find config file at path: {cfg_path}")
| [
"def",
"fetch_config_from_yaml",
"(",
"cfg_path",
":",
"Path",
"=",
"None",
")",
"->",
"YAML",
":",
"if",
"not",
"cfg_path",
":",
"cfg_path",
"=",
"find_config_file",
"(",
")",
"if",
"cfg_path",
":",
"with",
"open",
"(",
"cfg_path",
",",
"\"r\"",
")",
"as",
"conf_file",
":",
"parsed_config",
"=",
"load",
"(",
"conf_file",
".",
"read",
"(",
")",
")",
"return",
"parsed_config",
"raise",
"OSError",
"(",
"f\"Did not find config file at path: {cfg_path}\"",
")"
]
| https://github.com/trainindata/deploying-machine-learning-models/blob/aaeb3e65d0a58ad583289aaa39b089f11d06a4eb/section-07-ci-and-publishing/model-package/regression_model/config/core.py#L72-L82
|
End of preview (truncated to 100
rows)
No dataset card yet
New: Create and edit this dataset card directly on the website!
Contribute a Dataset Card