Datasets:
File size: 28,751 Bytes
ad17642 f3ffae3 ad17642 f3ffae3 ad17642 f3ffae3 ad17642 f3ffae3 ad17642 f3ffae3 ad17642 f3ffae3 ad17642 f3ffae3 ad17642 f3ffae3 ad17642 f3ffae3 ad17642 f3ffae3 ad17642 f843faa ad17642 f843faa ad17642 f843faa ad17642 f843faa ad17642 f843faa ad17642 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""The General Language Understanding Evaluation (GLUE) benchmark."""
import csv
import os
import textwrap
import numpy as np
import datasets
_GLUE_CITATION = """\
@inproceedings{wang2019glue,
title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
note={In the Proceedings of ICLR.},
year={2019}
}
"""
_GLUE_DESCRIPTION = """\
GLUE, the General Language Understanding Evaluation benchmark
(https://gluebenchmark.com/) is a collection of resources for training,
evaluating, and analyzing natural language understanding systems.
"""
_MRPC_DEV_IDS = "https://dl.fbaipublicfiles.com/glue/data/mrpc_dev_ids.tsv"
_MRPC_TRAIN = "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_train.txt"
_MRPC_TEST = "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_test.txt"
_MNLI_BASE_KWARGS = dict(
text_features={
"premise": "sentence1",
"hypothesis": "sentence2",
},
label_classes=["entailment", "neutral", "contradiction"],
label_column="gold_label",
data_url="https://dl.fbaipublicfiles.com/glue/data/MNLI.zip",
data_dir="MNLI",
citation=textwrap.dedent(
"""\
@InProceedings{N18-1101,
author = "Williams, Adina
and Nangia, Nikita
and Bowman, Samuel",
title = "A Broad-Coverage Challenge Corpus for
Sentence Understanding through Inference",
booktitle = "Proceedings of the 2018 Conference of
the North American Chapter of the
Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers)",
year = "2018",
publisher = "Association for Computational Linguistics",
pages = "1112--1122",
location = "New Orleans, Louisiana",
url = "http://aclweb.org/anthology/N18-1101"
}
@article{bowman2015large,
title={A large annotated corpus for learning natural language inference},
author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},
journal={arXiv preprint arXiv:1508.05326},
year={2015}
}"""
),
url="http://www.nyu.edu/projects/bowman/multinli/",
)
class GlueConfig(datasets.BuilderConfig):
"""BuilderConfig for GLUE."""
def __init__(
self,
text_features,
label_column,
data_url,
data_dir,
citation,
url,
label_classes=None,
process_label=lambda x: x,
**kwargs,
):
"""BuilderConfig for GLUE.
Args:
text_features: `dict[string, string]`, map from the name of the feature
dict for each text field to the name of the column in the tsv file
label_column: `string`, name of the column in the tsv file corresponding
to the label
data_url: `string`, url to download the zip file from
data_dir: `string`, the path to the folder containing the tsv files in the
downloaded zip
citation: `string`, citation for the data set
url: `string`, url for information about the data set
label_classes: `list[string]`, the list of classes if the label is
categorical. If not provided, then the label will be of type
`datasets.Value('float32')`.
process_label: `Function[string, any]`, function taking in the raw value
of the label and processing it to the form required by the label feature
**kwargs: keyword arguments forwarded to super.
"""
super(GlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.text_features = text_features
self.label_column = label_column
self.label_classes = label_classes
self.data_url = data_url
self.data_dir = data_dir
self.citation = citation
self.url = url
self.process_label = process_label
class Glue(datasets.GeneratorBasedBuilder):
"""The General Language Understanding Evaluation (GLUE) benchmark."""
BUILDER_CONFIGS = [
GlueConfig(
name="cola",
description=textwrap.dedent(
"""\
The Corpus of Linguistic Acceptability consists of English
acceptability judgments drawn from books and journal articles on
linguistic theory. Each example is a sequence of words annotated
with whether it is a grammatical English sentence."""
),
text_features={"sentence": "sentence"},
label_classes=["unacceptable", "acceptable"],
label_column="is_acceptable",
data_url="https://dl.fbaipublicfiles.com/glue/data/CoLA.zip",
data_dir="CoLA",
citation=textwrap.dedent(
"""\
@article{warstadt2018neural,
title={Neural Network Acceptability Judgments},
author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R},
journal={arXiv preprint arXiv:1805.12471},
year={2018}
}"""
),
url="https://nyu-mll.github.io/CoLA/",
),
GlueConfig(
name="sst2",
description=textwrap.dedent(
"""\
The Stanford Sentiment Treebank consists of sentences from movie reviews and
human annotations of their sentiment. The task is to predict the sentiment of a
given sentence. We use the two-way (positive/negative) class split, and use only
sentence-level labels."""
),
text_features={"sentence": "sentence"},
label_classes=["negative", "positive"],
label_column="label",
data_url="https://dl.fbaipublicfiles.com/glue/data/SST-2.zip",
data_dir="SST-2",
citation=textwrap.dedent(
"""\
@inproceedings{socher2013recursive,
title={Recursive deep models for semantic compositionality over a sentiment treebank},
author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},
booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},
pages={1631--1642},
year={2013}
}"""
),
url="https://datasets.stanford.edu/sentiment/index.html",
),
GlueConfig(
name="mrpc",
description=textwrap.dedent(
"""\
The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) is a corpus of
sentence pairs automatically extracted from online news sources, with human annotations
for whether the sentences in the pair are semantically equivalent."""
), # pylint: disable=line-too-long
text_features={"sentence1": "", "sentence2": ""},
label_classes=["not_equivalent", "equivalent"],
label_column="Quality",
data_url="", # MRPC isn't hosted by GLUE.
data_dir="MRPC",
citation=textwrap.dedent(
"""\
@inproceedings{dolan2005automatically,
title={Automatically constructing a corpus of sentential paraphrases},
author={Dolan, William B and Brockett, Chris},
booktitle={Proceedings of the Third International Workshop on Paraphrasing (IWP2005)},
year={2005}
}"""
),
url="https://www.microsoft.com/en-us/download/details.aspx?id=52398",
),
GlueConfig(
name="qqp",
description=textwrap.dedent(
"""\
The Quora Question Pairs2 dataset is a collection of question pairs from the
community question-answering website Quora. The task is to determine whether a
pair of questions are semantically equivalent."""
),
text_features={
"question1": "question1",
"question2": "question2",
},
label_classes=["not_duplicate", "duplicate"],
label_column="is_duplicate",
data_url="https://dl.fbaipublicfiles.com/glue/data/QQP-clean.zip",
data_dir="QQP",
citation=textwrap.dedent(
"""\
@online{WinNT,
author = {Iyer, Shankar and Dandekar, Nikhil and Csernai, Kornel},
title = {First Quora Dataset Release: Question Pairs},
year = {2017},
url = {https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs},
urldate = {2019-04-03}
}"""
),
url="https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs",
),
GlueConfig(
name="stsb",
description=textwrap.dedent(
"""\
The Semantic Textual Similarity Benchmark (Cer et al., 2017) is a collection of
sentence pairs drawn from news headlines, video and image captions, and natural
language inference data. Each pair is human-annotated with a similarity score
from 1 to 5."""
),
text_features={
"sentence1": "sentence1",
"sentence2": "sentence2",
},
label_column="score",
data_url="https://dl.fbaipublicfiles.com/glue/data/STS-B.zip",
data_dir="STS-B",
citation=textwrap.dedent(
"""\
@article{cer2017semeval,
title={Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation},
author={Cer, Daniel and Diab, Mona and Agirre, Eneko and Lopez-Gazpio, Inigo and Specia, Lucia},
journal={arXiv preprint arXiv:1708.00055},
year={2017}
}"""
),
url="http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark",
process_label=np.float32,
),
GlueConfig(
name="mnli",
description=textwrap.dedent(
"""\
The Multi-Genre Natural Language Inference Corpus is a crowdsourced
collection of sentence pairs with textual entailment annotations. Given a premise sentence
and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis
(entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are
gathered from ten different sources, including transcribed speech, fiction, and government reports.
We use the standard test set, for which we obtained private labels from the authors, and evaluate
on both the matched (in-domain) and mismatched (cross-domain) section. We also use and recommend
the SNLI corpus as 550k examples of auxiliary training data."""
),
**_MNLI_BASE_KWARGS,
),
GlueConfig(
name="mnli_mismatched",
description=textwrap.dedent(
"""\
The mismatched validation and test splits from MNLI.
See the "mnli" BuilderConfig for additional information."""
),
**_MNLI_BASE_KWARGS,
),
GlueConfig(
name="mnli_matched",
description=textwrap.dedent(
"""\
The matched validation and test splits from MNLI.
See the "mnli" BuilderConfig for additional information."""
),
**_MNLI_BASE_KWARGS,
),
GlueConfig(
name="qnli",
description=textwrap.dedent(
"""\
The Stanford Question Answering Dataset is a question-answering
dataset consisting of question-paragraph pairs, where one of the sentences in the paragraph (drawn
from Wikipedia) contains the answer to the corresponding question (written by an annotator). We
convert the task into sentence pair classification by forming a pair between each question and each
sentence in the corresponding context, and filtering out pairs with low lexical overlap between the
question and the context sentence. The task is to determine whether the context sentence contains
the answer to the question. This modified version of the original task removes the requirement that
the model select the exact answer, but also removes the simplifying assumptions that the answer
is always present in the input and that lexical overlap is a reliable cue."""
), # pylint: disable=line-too-long
text_features={
"question": "question",
"sentence": "sentence",
},
label_classes=["entailment", "not_entailment"],
label_column="label",
data_url="https://dl.fbaipublicfiles.com/glue/data/QNLIv2.zip",
data_dir="QNLI",
citation=textwrap.dedent(
"""\
@article{rajpurkar2016squad,
title={Squad: 100,000+ questions for machine comprehension of text},
author={Rajpurkar, Pranav and Zhang, Jian and Lopyrev, Konstantin and Liang, Percy},
journal={arXiv preprint arXiv:1606.05250},
year={2016}
}"""
),
url="https://rajpurkar.github.io/SQuAD-explorer/",
),
GlueConfig(
name="rte",
description=textwrap.dedent(
"""\
The Recognizing Textual Entailment (RTE) datasets come from a series of annual textual
entailment challenges. We combine the data from RTE1 (Dagan et al., 2006), RTE2 (Bar Haim
et al., 2006), RTE3 (Giampiccolo et al., 2007), and RTE5 (Bentivogli et al., 2009).4 Examples are
constructed based on news and Wikipedia text. We convert all datasets to a two-class split, where
for three-class datasets we collapse neutral and contradiction into not entailment, for consistency."""
), # pylint: disable=line-too-long
text_features={
"sentence1": "sentence1",
"sentence2": "sentence2",
},
label_classes=["entailment", "not_entailment"],
label_column="label",
data_url="https://dl.fbaipublicfiles.com/glue/data/RTE.zip",
data_dir="RTE",
citation=textwrap.dedent(
"""\
@inproceedings{dagan2005pascal,
title={The PASCAL recognising textual entailment challenge},
author={Dagan, Ido and Glickman, Oren and Magnini, Bernardo},
booktitle={Machine Learning Challenges Workshop},
pages={177--190},
year={2005},
organization={Springer}
}
@inproceedings{bar2006second,
title={The second pascal recognising textual entailment challenge},
author={Bar-Haim, Roy and Dagan, Ido and Dolan, Bill and Ferro, Lisa and Giampiccolo, Danilo and Magnini, Bernardo and Szpektor, Idan},
booktitle={Proceedings of the second PASCAL challenges workshop on recognising textual entailment},
volume={6},
number={1},
pages={6--4},
year={2006},
organization={Venice}
}
@inproceedings{giampiccolo2007third,
title={The third pascal recognizing textual entailment challenge},
author={Giampiccolo, Danilo and Magnini, Bernardo and Dagan, Ido and Dolan, Bill},
booktitle={Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing},
pages={1--9},
year={2007},
organization={Association for Computational Linguistics}
}
@inproceedings{bentivogli2009fifth,
title={The Fifth PASCAL Recognizing Textual Entailment Challenge.},
author={Bentivogli, Luisa and Clark, Peter and Dagan, Ido and Giampiccolo, Danilo},
booktitle={TAC},
year={2009}
}"""
),
url="https://aclweb.org/aclwiki/Recognizing_Textual_Entailment",
),
GlueConfig(
name="wnli",
description=textwrap.dedent(
"""\
The Winograd Schema Challenge (Levesque et al., 2011) is a reading comprehension task
in which a system must read a sentence with a pronoun and select the referent of that pronoun from
a list of choices. The examples are manually constructed to foil simple statistical methods: Each
one is contingent on contextual information provided by a single word or phrase in the sentence.
To convert the problem into sentence pair classification, we construct sentence pairs by replacing
the ambiguous pronoun with each possible referent. The task is to predict if the sentence with the
pronoun substituted is entailed by the original sentence. We use a small evaluation set consisting of
new examples derived from fiction books that was shared privately by the authors of the original
corpus. While the included training set is balanced between two classes, the test set is imbalanced
between them (65% not entailment). Also, due to a data quirk, the development set is adversarial:
hypotheses are sometimes shared between training and development examples, so if a model memorizes the
training examples, they will predict the wrong label on corresponding development set
example. As with QNLI, each example is evaluated separately, so there is not a systematic correspondence
between a model's score on this task and its score on the unconverted original task. We
call converted dataset WNLI (Winograd NLI)."""
),
text_features={
"sentence1": "sentence1",
"sentence2": "sentence2",
},
label_classes=["not_entailment", "entailment"],
label_column="label",
data_url="https://dl.fbaipublicfiles.com/glue/data/WNLI.zip",
data_dir="WNLI",
citation=textwrap.dedent(
"""\
@inproceedings{levesque2012winograd,
title={The winograd schema challenge},
author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},
booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},
year={2012}
}"""
),
url="https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html",
),
GlueConfig(
name="ax",
description=textwrap.dedent(
"""\
A manually-curated evaluation dataset for fine-grained analysis of
system performance on a broad range of linguistic phenomena. This
dataset evaluates sentence understanding through Natural Language
Inference (NLI) problems. Use a model trained on MulitNLI to produce
predictions for this dataset."""
),
text_features={
"premise": "sentence1",
"hypothesis": "sentence2",
},
label_classes=["entailment", "neutral", "contradiction"],
label_column="", # No label since we only have test set.
# We must use a URL shortener since the URL from GLUE is very long and
# causes issues in TFDS.
data_url="https://dl.fbaipublicfiles.com/glue/data/AX.tsv",
data_dir="", # We are downloading a tsv.
citation="", # The GLUE citation is sufficient.
url="https://gluebenchmark.com/diagnostics",
),
]
def _info(self):
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
if self.config.label_classes:
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
else:
features["label"] = datasets.Value("float32")
features["idx"] = datasets.Value("int32")
return datasets.DatasetInfo(
description=_GLUE_DESCRIPTION,
features=datasets.Features(features),
homepage=self.config.url,
citation=self.config.citation + "\n" + _GLUE_CITATION,
)
def _split_generators(self, dl_manager):
if self.config.name == "ax":
data_file = dl_manager.download(self.config.data_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": data_file,
"split": "test",
},
)
]
if self.config.name == "mrpc":
data_dir = None
mrpc_files = dl_manager.download(
{
"dev_ids": _MRPC_DEV_IDS,
"train": _MRPC_TRAIN,
"test": _MRPC_TEST,
}
)
else:
dl_dir = dl_manager.download_and_extract(self.config.data_url)
data_dir = os.path.join(dl_dir, self.config.data_dir)
mrpc_files = None
train_split = datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": os.path.join(data_dir or "", "train.tsv"),
"split": "train",
"mrpc_files": mrpc_files,
},
)
if self.config.name == "mnli":
return [
train_split,
_mnli_split_generator("validation_matched", data_dir, "dev", matched=True),
_mnli_split_generator("validation_mismatched", data_dir, "dev", matched=False),
_mnli_split_generator("test_matched", data_dir, "test", matched=True),
_mnli_split_generator("test_mismatched", data_dir, "test", matched=False),
]
elif self.config.name == "mnli_matched":
return [
_mnli_split_generator("validation", data_dir, "dev", matched=True),
_mnli_split_generator("test", data_dir, "test", matched=True),
]
elif self.config.name == "mnli_mismatched":
return [
_mnli_split_generator("validation", data_dir, "dev", matched=False),
_mnli_split_generator("test", data_dir, "test", matched=False),
]
else:
return [
train_split,
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": os.path.join(data_dir or "", "dev.tsv"),
"split": "dev",
"mrpc_files": mrpc_files,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": os.path.join(data_dir or "", "test.tsv"),
"split": "test",
"mrpc_files": mrpc_files,
},
),
]
def _generate_examples(self, data_file, split, mrpc_files=None):
if self.config.name == "mrpc":
# We have to prepare the MRPC dataset from the original sources ourselves.
examples = self._generate_example_mrpc_files(mrpc_files=mrpc_files, split=split)
for example in examples:
yield example["idx"], example
else:
process_label = self.config.process_label
label_classes = self.config.label_classes
# The train and dev files for CoLA are the only tsv files without a
# header.
is_cola_non_test = self.config.name == "cola" and split != "test"
with open(data_file, encoding="utf8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
if is_cola_non_test:
reader = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for n, row in enumerate(reader):
if is_cola_non_test:
row = {
"sentence": row[3],
"is_acceptable": row[1],
}
example = {feat: row[col] for feat, col in self.config.text_features.items()}
example["idx"] = n
if self.config.label_column in row:
label = row[self.config.label_column]
# For some tasks, the label is represented as 0 and 1 in the tsv
# files and needs to be cast to integer to work with the feature.
if label_classes and label not in label_classes:
label = int(label) if label else None
example["label"] = process_label(label)
else:
example["label"] = process_label(-1)
# Filter out corrupted rows.
for value in example.values():
if value is None:
break
else:
yield example["idx"], example
def _generate_example_mrpc_files(self, mrpc_files, split):
if split == "test":
with open(mrpc_files["test"], encoding="utf8") as f:
# The first 3 bytes are the utf-8 BOM \xef\xbb\xbf, which messes with
# the Quality key.
f.seek(3)
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for n, row in enumerate(reader):
yield {
"sentence1": row["#1 String"],
"sentence2": row["#2 String"],
"label": int(row["Quality"]),
"idx": n,
}
else:
with open(mrpc_files["dev_ids"], encoding="utf8") as f:
reader = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
dev_ids = [[row[0], row[1]] for row in reader]
with open(mrpc_files["train"], encoding="utf8") as f:
# The first 3 bytes are the utf-8 BOM \xef\xbb\xbf, which messes with
# the Quality key.
f.seek(3)
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for n, row in enumerate(reader):
is_row_in_dev = [row["#1 ID"], row["#2 ID"]] in dev_ids
if is_row_in_dev == (split == "dev"):
yield {
"sentence1": row["#1 String"],
"sentence2": row["#2 String"],
"label": int(row["Quality"]),
"idx": n,
}
def _mnli_split_generator(name, data_dir, split, matched):
return datasets.SplitGenerator(
name=name,
gen_kwargs={
"data_file": os.path.join(data_dir, "%s_%s.tsv" % (split, "matched" if matched else "mismatched")),
"split": split,
"mrpc_files": None,
},
)
|